設△ABC的三個內(nèi)角為A、B、C,向量
m
=(
3
sinA,sinB),
n
=(cosB,
3
cosA)
,若
m
n
=1+cos(A+B)
,則C=
3
3
分析:由題意求得
m
n
=
3
sinC,再根據(jù)
m
n
=1+cos(A+B)
=1-cosC,可得 sin(C+
π
6
)=
1
2
,再根據(jù)C為△ABC的內(nèi)角,從而求得C的值.
解答:解:由題意可得
m
n
=
3
sinAcosB+
3
sinBcosA=
3
sin(A+B)=
3
sinC.
再根據(jù)
m
n
=1+cos(A+B)
=1-cosC,可得
3
sinC=1-cosC,即 sin(C+
π
6
)=
1
2
,
∴在△ABC中,應有 C+
π
6
=
6
,則C=
3
,
故答案為
3
點評:本題主要考查兩個向量的數(shù)量積公式,兩角和差的三角公式、誘導公式的應用,根據(jù)三角函數(shù)的值求角,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設△ABC的三個內(nèi)角A,B,C對邊分別是a,b,c,已知
a
sinA
=
3
b
cosB

(I)求角B的大。
(II)若cos(B+C)+
3
sinA=2,且bc=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=2cosxsin(x+
π
6
)+2sinxcos(x+
π
6
)

(I)當x∈[0,
π
2
]時,求f(x)
的值域;
(II)設△ABC的三個內(nèi)角A,B,C所對的三邊依次為a,b,c,已知f(A)=1,a=
7
,△ABC面積為
3
3
2
,求b+c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的三個內(nèi)角A、B、C對的邊分別為a、b、c且a2+b2=mc2(m為常數(shù)),若tanC(tanA+tanB)=2tanAtanB,則實數(shù)m的值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的三個內(nèi)角分別為A,B,C.向量
m
=(1,cos
C
2
)與
n
=(
3
sin
C
2
+cos
C
2
,
3
2
)
共線.
(Ⅰ)求角C的大小;
(Ⅱ)設角A,B,C的對邊分別是a,b,c,且滿足2acosC+c=2b,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的三個內(nèi)角為A,B,C,則“sinA>sinB”是“cosA<cosB”的( 。

查看答案和解析>>

同步練習冊答案