【題目】為了治理空氣污染,某市設(shè)個監(jiān)測站用于監(jiān)測空氣質(zhì)量指數(shù)
,其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有
、
、
個監(jiān)測站,并以
個監(jiān)測站測得的
的平均值為依據(jù)播報該市的空氣質(zhì)量.
(1)若某日播報的為
,已知輕度污染區(qū)
平均值為
,中度污染區(qū)
平均值為
,求重試污染區(qū)
平均值;
(2)如圖是年
月份
天的
的頻率分布直方圖,
月份僅有
天
在
內(nèi).
①某校參照官方公布的,如果周日
小于
就組織學(xué)生參加戶外活動,以統(tǒng)計數(shù)據(jù)中的頻率為概率,求該校學(xué)生周日能參加戶外活動的概率;
②環(huán)衛(wèi)部門從月份
不小于
的數(shù)據(jù)中抽取兩天的數(shù)據(jù)進行研究,求抽取的這兩天中
值都在
的概率.
【答案】(1);(2)①
;②
.
【解析】
(1)設(shè)重度污染區(qū)平均值為
,根據(jù)題意可得出關(guān)于
的方程,進而可求得
的值;
(2)①計算出月份
天中
不小于
的天數(shù),進而可求得該校學(xué)生周日能參加戶外活動的概率;
②由題意可知,在
上的有
天,編號分別設(shè)為
、
、
、
、
,
在
上的有
天,編號設(shè)為
、
,列出所有的基本事件,并確定事件“抽取的這兩天中
值都在
”所包含的基本事件,利用古典概型的概率公式可求得結(jié)果.
(1)設(shè)重度污染區(qū)平均值為
,則
,解得
;
(2)①在
上的有
天,
在
上的有
天,
在
上的有
天,
所以月份
不小于
天的共
天.
即能參加戶外活動的概率為;
②由①在
上的有
天,編號分別設(shè)為
、
、
、
、
,
在
上的有
天,編號設(shè)為
、
,
從天中抽取兩天有:
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
,共
種.
滿足條件的有、
、
、
、
、
、
、
、
、
,共
種,
所以滿足條件的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某植物學(xué)家培養(yǎng)出一種觀賞性植物,會開出紅花或黃花,已知該植物第一代開紅花和黃花的概率都是,從第二代開始,若上一代開紅花,則這一代開紅花的概率是
,開黃花的概率是
;若上一代開黃花,則這一代開紅花的概率是
,開黃花的概率是
.記第n代開紅花的概率為
,第n代開黃花的概率為
.
(1)求;
(2)①證明:數(shù)列為等比數(shù)列;
②第代開哪種顏色花的概率更大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是拋物線
:
上的一點,其焦點為點
,且拋物線
在點
處的切線
交圓
:
于不同的兩點
,
.
(1)若點,求
的值;
(2)設(shè)點為弦
的中點,焦點
關(guān)于圓心
的對稱點為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省為迎接新高考,擬先對考生某選考學(xué)科的實際得分進行等級賦分,再按賦分后的分?jǐn)?shù)從高分到低分劃A、B、C、D、E五個等級,考生實際得分經(jīng)賦分后的分?jǐn)?shù)在到1之間.在等級賦分科學(xué)性論證時,對過去一年全省高考考生的該學(xué)科成績重新賦分后進行分析,隨機抽取2000名學(xué)生的該學(xué)科賦分后的成績,得到如下頻率分布直方圖:(不考慮缺考考生的試卷)
附:若X~N(μ,σ2),則P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544,P(μ-3σ<X<μ+3σ)=0.9974,=14.59,∑(xi-
)2pi=213
(1)求這2000名考生賦分后該學(xué)科的平均(同一組中數(shù)據(jù)用該組區(qū)間中點作代表);
(2)由頻率分布直方圖可以認(rèn)為,學(xué)生經(jīng)過賦分以后的成績X服從正態(tài)分布X~N(μ,σ2),其中μ近似為樣本平均數(shù),σ2近似為樣本方差s2:
(i)利用正態(tài)分布,求P(50.41<X<79.59);
(ii)某市有20000名高三學(xué)生,記Y表示這20000名高三學(xué)生中賦分后該學(xué)科等級為A等(即得分大于79.59)的學(xué)生數(shù),利用(i)的結(jié)果,求EY.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的普通方程為
,直線
的參數(shù)方程為
(
為參數(shù)),其中
.以坐標(biāo)
為極點,以
軸非負(fù)半軸為極軸,建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程和直線
的普通方程;
(2)設(shè)點,
的極坐標(biāo)方程為
,直線
與
的交點分別為
,
.當(dāng)
為等腰直角三角形時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)共有1000人,其中男生700人,女生300人,為了了解該校學(xué)生每周平均體育鍛煉時間的情況以及經(jīng)常進行體育鍛煉的學(xué)生是否與性別有關(guān)(經(jīng)常進行體育鍛煉是指:周平均體育鍛煉時間不少于4小時),現(xiàn)在用分層抽樣的方法從中收集200位學(xué)生每周平均體育鍛煉時間的樣本數(shù)據(jù)(單位:小時),其頻率分布直方圖如圖.已知在樣本數(shù)據(jù)中,有40位女生的每周平均體育鍛煉時間超過4小時,根據(jù)獨立性檢驗原理( )
附:,其中
.
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
A.有95%的把握認(rèn)為“該校學(xué)生每周平均體育鍛煉時間與性別無關(guān)”
B.有90%的把握認(rèn)為“該校學(xué)生每周平均體育鍛煉時間與性別有關(guān)”
C.有90%的把握認(rèn)為“該校學(xué)生每周平均體育鍛煉時間與性別無關(guān)”
D.有95%的把握認(rèn)為“該校學(xué)生每周平均體育鍛煉時間與性別有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,點
在橢圓
上.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為原點,過原點的直線(不與
軸垂直)與橢圓
交于
、
兩點,直線
、
與
軸分別交于點
、
.問:
軸上是否存在定點
,使得
?若存在,求點
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,如下圖就是在平面直角坐標(biāo)系的“心形曲線”,又名RC心形線.如果以坐標(biāo)原點為極點,以
軸正半軸為極軸,建立極坐標(biāo)系,其RC心形線的極坐標(biāo)方程為
.
(1)求RC心形線的直角坐標(biāo)方程;
(2)已知與直線
(
為參數(shù)),若直線
與RC心形線交于兩點
,
,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com