【題目】我國齊梁時代的數(shù)學家祖暅提出了一條原理:“冪勢既同,則積不容異”.意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體的體積相等.橢球體是橢圓繞其軸旋轉所成的旋轉體.如圖,將底面直徑都為,高皆為的橢半球體和已被挖去了圓錐體的圓柱放置于同一平面上,用平行于平面且與平面任意距離處的平面截這兩個幾何體,可橫截得到兩截面.可以證明總成立.據(jù)此,半短軸長為1,半長軸長為3的橢球體的體積是_______

【答案】

【解析】

數(shù)學家祖暅原理:“冪勢既同,則積不容異”,根據(jù)這一原理,可以得到半橢球體的體積為,從而得到橢球體的體積,解決本題。

解:因為總成立

則半橢球體的體積為

所以,橢球體的體積為,

因為橢球體的半短軸長為1,半長軸長為3

所以,橢球體的體積為,

故答案是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列中的項按順序可以排列成如圖的形式,第一行項,排;第二行項,從左到右分別排;第三行項,……以此類推,設數(shù)列的前項和為,則滿足的最小正整數(shù)的值為( )

4,

4,43

4,43,4

4,43,4 , 4

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心是坐標原點,它的短軸長為,一個焦點為,一個定點,且,過點的直線與橢圓相交于兩點..

1)求橢圓的方程及離心率.

2)如果以為直徑的圓過原點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex有兩個極值點.

(1)求實數(shù)a的取值范圍;

(2)若函數(shù)f(x)的兩個極值點分別為x1,x2,求證:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調查一款電視機的使用時間,研究人員對該款電視機進行了相應的測試,將得到的數(shù)據(jù)統(tǒng)計如下圖所示:

并對不同年齡層的市民對這款電視機的購買意愿作出調查,得到的數(shù)據(jù)如下表所示:

愿意購買這款電視機

不愿意購買這款電視機

總計

40歲以上

800

1000

40歲以下

600

總計

1200

(1)根據(jù)圖中的數(shù)據(jù),試估計該款電視機的平均使用時間;

(2)根據(jù)表中數(shù)據(jù),判斷是否有99.9%的把握認為“愿意購買該款電視機”與“市民的年齡”有關;

(3)若按照電視機的使用時間進行分層抽樣,從使用時間在的電視機中抽取5臺,再從這5臺中隨機抽取2臺進行配件檢測,求被抽取的2臺電視機的使用時間都在內的概率.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為坐標原點,橢圓的左、右焦點分別為,.過焦點且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.

(1)求橢圓的標準方程;

(2)是否存在直線與橢圓相交于兩點,使得?若存在,求的取值范圍;若不存在,請說明理由!

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市場研究人員為了了解產業(yè)園引進的甲公司前期的經(jīng)營狀況,對該公司2018年連續(xù)六個月的利潤進行了統(tǒng)計,并根據(jù)得到的數(shù)據(jù)繪制了相應的折線圖,如圖所示

(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼之間的關系,求關于的線性回歸方程,并預測該公司2019年3月份的利潤;

(2)甲公司新研制了一款產品,需要采購一批新型材料,現(xiàn)有兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用個月,但新材料的不穩(wěn)定性會導致材料損壞的年限不相同,現(xiàn)對兩種型號的新型材料對應的產品各件進行科學模擬測試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計如下表:

使用壽命

材料類型

個月

個月

個月

個月

總計

如果你是甲公司的負責人,你會選擇采購哪款新型材料?

參考數(shù)據(jù):,.參考公式:回歸直線方程為,其中 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形與梯形所在的平面互相垂直, ,,點在線段上.

() 若點的中點,求證:平面;

() 求證:平面平面

() 當平面與平面所成二面角的余弦值為時,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設有關于的一元二次方程

)若是從四個數(shù)中任取的一個數(shù),是從三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.

)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

同步練習冊答案