設(shè)斜率為
2
2
的直線l與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)交于不同的兩點(diǎn)P、Q,若點(diǎn)P、Q在x軸上的射影恰好為雙曲線的兩個(gè)焦點(diǎn),則該雙曲線的離心率是( 。
A、
2
B、2
C、
3
D、3
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)斜率為
2
2
的直線l:y=
2
2
x+t,代入雙曲線方程,消去y,由題意可得,方程的兩根分別為-c,c.則有t=0,代入c,得到方程,再由a,b,c的關(guān)系和離心率公式,計(jì)算即可得到所求.
解答: 解:設(shè)斜率為
2
2
的直線l:y=
2
2
x+t,
代入雙曲線方程,消去y,可得,(b2-
1
2
a2)x2-
2
a2tx-a2t2-a2b2=0,
由于點(diǎn)P、Q在x軸上的射影恰好為雙曲線的兩個(gè)焦點(diǎn),
則有上式的兩根分別為-c,c.
則t=0,即有(b2-
1
2
a2)c2=a2b2,由于b2=c2-a2
則有2c4-5a2c2+2a4=0,由e=
c
a
,則2e4-5e2+2=0,
解得e2=2(
1
2
舍去),
則e=
2

故選:A.
點(diǎn)評(píng):本題考查雙曲線的方程和性質(zhì),考查直線方程和雙曲線方程聯(lián)立,消去未知數(shù),運(yùn)用韋達(dá)定理,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=
12
13
,α∈(
π
2
,π),cosβ=
3
5
,β∈(-
π
2
,0),求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)l是△ABC所在平面α外的一條直線,若l⊥AB且l⊥AC,則直線l與平面α的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(1,0,0),B(0,1,0),C(0,0,2).
(1)若
DB
AC
,
DC
AB
,求點(diǎn)D的坐標(biāo);
(2)問(wèn)是否存在實(shí)數(shù)α,β,使得
AC
AB
BC
成立?若存在,求出α,β的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求值:tan660°+sin(-330°)+cos960°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b∈R+,且a+b=1,則ab的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有一塊形狀為直角梯形的材料ABCD,底邊BC的長(zhǎng)為5米,邊AB的長(zhǎng)為1米(其中0<t<
15
4
).如圖,現(xiàn)要從中截出一塊材料BEPF,其中點(diǎn)E、F、P分別在邊AB、BC和CD上,且
PF
FC
=
3
4
.設(shè)PF為x米,矩陣BEPF的面積為y(平方米),則y關(guān)于x的函數(shù)f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin x+cos x,x∈(0,2π).
(1)求x0,使f′(x0)=0;
(2)解釋(1)中x0及f′(x0)的意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線x-ay+1=0經(jīng)過(guò)拋物線y=
1
4
x2的焦點(diǎn),則實(shí)數(shù)a=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案