已知圓C:(x+2)2+y2=4,相互垂直的兩條直線l1、l2都過點A(a,0).
(Ⅰ)若l1、l2都和圓C相切,求直線l1、l2的方程;
(Ⅱ)當(dāng)a=2時,若圓心為M(1,m)的圓和圓C外切且與直線l1、l2都相切,求圓M的方程;
(Ⅲ)當(dāng)a=-1時,求l1、l2被圓C所截得弦長之和的最大值.
分析:(I)根據(jù)題意得l1,l2的斜率都存在,設(shè)l1:y=k(x-a),則l2:y=-
1
k
(x-a)
,則
|2k+ak
k2+1
=2
|2+a
k2+1
=2
,由此能夠求出直線l1、l2的方程.
(Ⅱ)設(shè)圓的半徑為r,則
(1-2)2+m2=2r2
(1+2)2+m2=(2+r)2
解得
r=2
m=±
7
,由此能得到所求圓M的方程.
(Ⅲ)當(dāng)a=-1時,l1、l2被圓C所截得弦的中點分別是E、F,當(dāng)a=-1時,l1、l2被圓C所截得弦長分別是d1、d2;圓心為B,則AEBF為矩形,所以BE2+BF2=AB2=1,由此能夠求出l1、l2被圓C所截得弦長之和的最大值.
解答:解:(1)根據(jù)題意得l1,l2的斜率都存在,設(shè)l1:y=k(x-a),則l2:y=-
1
k
(x-a)
(1分)
|2k+ak
k2+1
=2
|2+a
k2+1
=2
k=±1,a=-2±2
2

l1,l2的方程分別是l1:y=x-2
2
+2與l2:y=-x-2
2
+2;
l1:y=x+2
2
+2與l2:y=-x+2
2
+2
(6分)
(Ⅱ)設(shè)圓的半徑為r,則
(1-2)2+m2=2r2
(1+2)2+m2=(2+r)2
解得
r=2
m=±
7
,
所以所求圓M的方程為(x-1)2+(y±
7
)2=4
(11分)
(Ⅲ)當(dāng)a=-1時,l1、l2被圓C所截得弦的中點分別是E、F,當(dāng)a=-1時,l1、l2被圓C所截得弦長分別是d1、d2;圓心為B,則AEBF為矩形,
所以BE2+BF2=AB2=1,即(4-(
d1
2
)2)+(4-(
d2
2
)2)=1
∴d12+d22=28,(14分)
所以d1+d2
2
d
2
1
+
d
2
2
=2
14

即l1、l2被圓C所截得弦長之和的最大值2
14
(16分)
點評:本題考查直線和圓的位置關(guān)系,解題時要認(rèn)真審題,仔細(xì)解答,注意公式的合理選用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-2)2+(y-4)2=4,直線l1過原點O(0,0).
(1)若l1與圓C相切,求l1的方程;
(2)若l1與圓C相交于不同兩點P、Q,線段PQ的中點為M,又l1與l2:x+2y+1=0的交點為N,求證:OM•ON為定值;
(3)求問題(2)中線段MN長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x+2)2+y2=24,定點A(2,0),M為圓C上一動點,點P在AM上,點N在CM上(C為圓心),且滿足
.
AM
= 2
.
AP
,
.
NP
-
.
AM
=0
,設(shè)點N的軌跡為曲線E.
(1)求曲線E的方程;
(2)過點B(m,0)作傾斜角為
5
6
π
的直線l交曲線E于C、D兩點.若點Q(1,0)恰在以線段CD為直徑的圓的內(nèi)部,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-2)2+y2=1,D是y軸上的動點,直線DA、DB分別切圓C于A、B兩點.
(1)如果|AB|=
4
2
3
,求直線CD的方程;
(2)求動弦AB的中點的軌跡方程E;
(3)直線x-y+m=0(m為參數(shù))與方程E交于P、Q兩個不同的點,O為原點,設(shè)直線OP、OQ的斜率分別為KOP,KOQ,試將KOP•KOQ表示成m的函數(shù),并求其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-2)2+(y-1)2=2,過原點的直線l與圓C相切,則所有過原點的切線的斜率之和為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-2)2+(y-1)2=25,過點M(-2,4)的圓C的切線l1與直線l2:ax+3y+2a=0平行,則l1與l2間的距離是(  )
A、
8
5
B、
2
5
C、
28
5
D、
12
5

查看答案和解析>>

同步練習(xí)冊答案