【題目】已知:函數(shù).
(1)當時,求函數(shù)的極值;
(2)若函數(shù),討論的單調(diào)性;
(3)若函數(shù)的圖象與軸交于兩點,且.設,其中常數(shù)、滿足條件,且.試判斷在點處的切線斜率的正負,并說明理由.
【答案】(1)極小值1,無極大值(2) 當時, 在上單調(diào)減;當時, 在和上單調(diào)減,在上單調(diào)增(3)在點處的切線斜率為正.
【解析】試題分析:(1)求導,利用導函數(shù)的符號變化得到函數(shù)的單調(diào)性,進而得到函數(shù)的極值;(2)求導,討論二次項系數(shù)的符號、判別式的符號及兩根大小進行求解;(3)先將問題轉(zhuǎn)化為判斷的符號,合理構(gòu)造函數(shù)進行證明.
試題解析:(1)當時, ∴,令,則,列表得:
1 | |||
0 | |||
單調(diào)減 | 極小值 | 單調(diào)增 |
∴有極小值,無極大值;
(2), ∴,設
①當時, 恒成立,即恒成立,∴ 在上單調(diào)減;
②當且,即時, 恒成立,且不恒為0,則恒成立,且不恒為0,∴在上單調(diào)減;
③當且,即時,
有兩個實數(shù)根: ,且
∴ ∴當或時, , ;當時, , ;
∴在和上單調(diào)減,在上單調(diào)增.
∴綜上:當時, 在上單調(diào)減;當時, 在和上單調(diào)減,在上單調(diào)增.
(3), ,問題即為判斷的符號.
∵函數(shù)的圖象與軸交于兩點,且
∴ 兩式相減得:
∴
∴
)
∵且 ∴ ∵ ∴
研究: 的符號,即判斷的符號.
令, ,設
∴
方法(一)設,其對稱軸為:
∴在上單調(diào)減,則,即在上恒成立 ∴在上單調(diào)增 ∴,即
∵ ∴
∴,即
∴在點處的切線斜率為正.
方法(二)
∵, ∴ ∴在上恒成立
∴在上單調(diào)增 ∴,即
∵ ∴
∴,即
∴在點處的切線斜率為正.
科目:高中數(shù)學 來源: 題型:
【題目】先后拋擲兩枚質(zhì)地均勻的骰子各一次,設出現(xiàn)的點數(shù)之和是12,11,10的概率依次是,,,則( )
A. =< B. <<
C. <= D. =<
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且cos2 = ,△ABC的面積為4.
(1)求 的值;
(2)若2sinB=5sinC,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2013年1月,北京經(jīng)歷了59年來霧霾天氣最多的一個月.據(jù)氣象局統(tǒng)計,北京市2013年1月1日至1月30日這30天里有26天出現(xiàn)霧霾天氣,《環(huán)境空氣質(zhì)量指數(shù)(AQI)技術(shù)規(guī)定(試行)》如表1:
表1 空氣質(zhì)量指數(shù)AQI分組表
AQI指數(shù)M | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
級別 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ |
狀況 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
表2是某氣象觀測點記錄的連續(xù)4天里AQI指數(shù)M與當天的空氣水平可見度y(km)的情況,表3是某氣象觀測點記錄的北京市2013年1月1日至1月30日的AQI指數(shù)頻數(shù)分布表.
表2 AQI指數(shù)M與當天的空氣水平可見度y(km)的情況
AQI指數(shù)M | 900 | 700 | 300 | 100 |
空氣水平可見度y(km) | 0.5 | 3.5 | 6.5 | 9.5 |
表3 北京市2013年1月1日至1月30日AQI指數(shù)頻數(shù)分布表
AQI指數(shù)M | [0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
頻數(shù) | 3 | 6 | 12 | 6 | 3 |
(1)設x=,根據(jù)表2的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.
(2)小王在北京開了一家洗車店,經(jīng)小王統(tǒng)計:當AQI指數(shù)低于200時,洗車店平均每天虧損約2000元;當AQI指數(shù)在200至400時,洗車店平均每天收入約4000元;當AQI指數(shù)不低于400時,洗車店平均每天收入約7000元.
①估計小王的洗車店在2013年1月份平均每天的收入;
②從AQI指數(shù)在[0,200)和[800,1000]內(nèi)的這6天中抽取2天,求這2天的收入之和不低于5000元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列4個命題,其中正確命題的個數(shù)是( )
①計算:9192除以100的余數(shù)是1;
②命題“x>0,x﹣lnx>0”的否定是“x>0,x﹣lnx≤0”;
③y=tanax(a>0)在其定義域內(nèi)是單調(diào)函數(shù)而且又是奇函數(shù);
④命題p:“|a|+|b|≤1”是命題q:“對任意的x∈R,不等式asinx+bcosx≤1恒成立”的充分不必要條件.
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的頂點在原點,對稱軸是軸,且過點.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知斜率為的直線交軸于點,且與曲線相切于點,點在曲線上,且直線軸, 關(guān)于點的對稱點為,判斷點是否共線,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足,數(shù)列的前項和為.
(1)求的值;
(2)若.
①求證:數(shù)列為等差數(shù)列;
②求滿足的所有數(shù)對.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的右焦點為, 是雙曲線C上的點, ,連接并延長交雙曲線C與點P,連接,若是以為頂點的等腰直角三角形,則雙曲線C的漸近線方程為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù),滿足,.
(1)求函數(shù)的解析式;
(2)若關(guān)于的不等式在上有解,求實數(shù)的取值范圍;
(3)若函數(shù)的兩個零點分別在區(qū)間和內(nèi),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com