已知a=log23,則用a的代數(shù)式表示log38-log26=( 。
A、
3
a
-1-a
B、2a-1
C、
3
a
-1+a
D、4a-1
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:由log38-log26=3log32-(1+log 2 3),能求出結果.
解答: 解:∵a=log23,
∴l(xiāng)og38-log26
=3log32-(1+log 2 3)
=
3
a
-1-a

故選:A.
點評:本題考查對數(shù)式的運算,是基礎題,解題時要注意對數(shù)的運算法則和換底公式的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

全集U=R,A={x|-4≤x<2},B={x|-1<x≤3},P={x|x≤0或x≥
7
2
}
,求
(1)A∩B;
(2)(∁UB)∪P.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知球的表面積與某圓柱表面積相等,其中該圓柱的正(主)視圖是邊長為2的正方形,則該球的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足約束條件
x≥0
y≥0
x+y≤1
,則z=3x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=lg(x+
1+x2
),判斷并證明函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|-1≤x<2},B={-1,0,1,2},則A∩B=( 。
A、{0,1}
B、{-1,0,1}
C、{-1,0,1,2}
D、{0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,有A、B兩個點,其中A(-6,3)、B(-2,5). 
(1)若一只青蛙從A點跳到x軸上一點P處,再從P點跳到B點,則青蛙所跳的路程最短時點P的坐標是
 

(2)若這只青蛙先從A點出發(fā)跳到B點,再從B點跳到y(tǒng)軸上的C點,繼續(xù)從C點跳到x軸上的D點,最后從D點回到A點(青蛙每次所跳的距離不一定相等),當青蛙四步跳完的路程最短時,直線CD的解析式是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知冪函數(shù)f(x)=xm-3(m∈N+)在(0,+∞)上是減函數(shù),求函數(shù)f(x)的解析式,并討論函數(shù)f(x)的單調(diào)性與奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間(0,1)上隨機取兩個數(shù)u、v,求關于x的一元二次方程x2-
v
x+u=0有實根的概率為(  )
A、
1
3
B、
1
2
C、
2
3
D、
1
8

查看答案和解析>>

同步練習冊答案