設(shè)平面上P、Q兩點(diǎn)的坐標(biāo)分別是P=(cos
x
2
,sin
x
2
)、Q(-cos
3x
2
,sin
3x
2
)
,其中x∈[0,
π
2
]

(Ⅰ)求|PQ|的表達(dá)式;
(Ⅱ)記f(x)=|PQ|2-|PQ|,求函數(shù)f(x)的最小值和最大值.
分析:(I)由兩點(diǎn)間的距離公式,結(jié)合三角恒等變換公式化簡(jiǎn)得|PQ|=2|cosx|,再由x∈[0,
π
2
]
可得|PQ|=2cosx;
(II)由(I)的|PQ|表達(dá)式,得f(x)=4cos2x-2cosx=4(cosx-
1
4
2-
1
4
,再由cosx∈[0,1]結(jié)合二次函數(shù)性質(zhì)即可算出f(x)的最小值和最大值.
解答:解:(I)P=(cos
x
2
,sin
x
2
)、Q(-cos
3x
2
,sin
3x
2
)
,
∴|PQ|=
(cos
x
2
+cos
3x
2
)2+(sin
x
2
-sin
3x
2
)2

=
(cos2
x
2
+sin2
x
2
)+(cos2
3x
2
+sin2
3x
2
)+2(cos
x
2
cos
3x
2
-sin
x
2
sin
3x
2
)

=
2+2cos2x
=
4cos2x
=2|cosx|
∵x∈[0,
π
2
]
,∴cosx>0,可得|PQ|=2cosx…(6分)
(II)f(x)=|PQ|2-|PQ|=4cos2x-2cosx=4(cosx-
1
4
2-
1
4
…(8分)
∵x∈[0,
π
2
]
,得cosx∈[0,1]
∴由二次函數(shù)性質(zhì)知:當(dāng)cosx=
1
4
時(shí),f(x)有最小值-
1
4

當(dāng)cosx=1時(shí),f(x)有最大值2…(12分)
點(diǎn)評(píng):本題給出點(diǎn)含有三角函數(shù)坐標(biāo)的形式,求|PQ|的表達(dá)式,并依此求f(x)=|PQ|2-|PQ|的最值.著重考查了三角恒等變換公式、兩點(diǎn)間的距離公式和二次函數(shù)的圖象與性質(zhì)等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)平面上P、Q兩點(diǎn)的坐標(biāo)分別是(cos
x
2
,sin
x
2
),(-cos
3x
2
,  sin
3x
2
),其中x∈[0,
π
2
]

(1)求|PQ|的表達(dá)式;
(2)記f(x)=|PQ|2-4λ|PQ|,求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)平面上P、Q兩點(diǎn)的坐標(biāo)分別是(cos
x
2
,sin
x
2
),(-cos
3x
2
,  sin
3x
2
),其中x∈[0,
π
2
]

(1)求|PQ|的表達(dá)式;
(2)記f(x)=|PQ|2-4λ|PQ|,求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年江蘇省鹽城市東臺(tái)市高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)平面上P、Q兩點(diǎn)的坐標(biāo)分別是P=(cos)、Q,其中x
(Ⅰ)求|PQ|的表達(dá)式;
(Ⅱ)記f(x)=|PQ|2-|PQ|,求函數(shù)f(x)的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年貴州省黔西南州興義市天賦中學(xué)高三(上)第五次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)平面上P、Q兩點(diǎn)的坐標(biāo)分別是(),(),其中
(1)求|PQ|的表達(dá)式;
(2)記f(x)=|PQ|2-4λ|PQ|,求函數(shù)f(x)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案