【題目】已知函數(shù)
(1)求函數(shù)的值域;
(2)若時(shí),函數(shù)的最小值為,求的值和函數(shù) 的最大值。
【答案】(1);(2)或,當(dāng)時(shí)f(x)的最大值為;當(dāng)時(shí)f(x)的最大值為。
【解析】
試題分析:(1)本題通過(guò)換元轉(zhuǎn)化為二次函數(shù)最值問題,再利用單調(diào)性求最值,從而得到函數(shù)值域;(2)某區(qū)間上的二次函數(shù)最值問題,要進(jìn)行配方,確定對(duì)稱軸,弄清單調(diào)性,才能求解.如果對(duì)稱軸不確定,要進(jìn)行分類討論來(lái)解決.
試題解析:設(shè) 2分
(1) 在上是減函數(shù)
, 所以值域?yàn)?/span> . 6分
(2)①當(dāng)時(shí), 由
所以在上是減函數(shù),
或(不合題意舍去) 8分
當(dāng)時(shí)有最大值,
即 10分
②當(dāng)時(shí),,在上是減函數(shù),
,或(不合題意舍去)
或(舍去) 12分
當(dāng)時(shí)y有最大值,即
綜上,或,當(dāng)時(shí)f(x)的最大值為;
當(dāng)時(shí)f(x)的最大值為。 14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:經(jīng)過(guò)定點(diǎn)P0(x0 , y0)的直線都可以用方程y﹣y0=k(x﹣x0)表示,命題q:直線xtan +y﹣7=0的傾斜角是 ,則下列命題是真命題的為( )
A.(p)∧q
B.p∧q
C.p∨(q)
D.(P)∧(q)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+a2(a、b∈R)
(1)若函數(shù)f(x)在x=1處有極值為10,求b的值;
(2)若a=﹣4,f(x)在x∈[0,2]上單調(diào)遞增,求b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)A(﹣4,0)的動(dòng)直線l與拋物線C:x2=2py(p>0)相交于B、C兩點(diǎn).
(1)當(dāng)l的斜率是時(shí), ,求拋物線C的方程;
(2)設(shè)BC的中垂線在y軸上的截距為b,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】語(yǔ)句p:曲線x2﹣2mx+y2﹣4y+2m+7=0表示圓;語(yǔ)句q:曲線 + =1表示焦點(diǎn)在x軸上的橢圓,若p∨q為真命題,¬p為真命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐A﹣BCDE中,AB⊥平面BCDE,四邊形BCDE為矩形,F(xiàn)為AC的中點(diǎn),AB=BC=2,BE= .
(Ⅰ)證明:EF⊥BD;
(Ⅱ)在線段AE上是否存在一點(diǎn)G,使得二面角D﹣BG﹣E的大小為 ?若存在,求 的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在實(shí)數(shù)集R中,已知集合A={x| ≥0}和集合B={x||x﹣1|+|x+1|≥2},則A∩B=( )
A.{﹣2}∪[2,+∞)
B.(﹣∞,﹣2]∪[2,+∞)
C.[2,+∞)
D.{0}∪[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , a1=1,an≠0,anan+1=4Sn﹣1.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)證明: + +…+ <2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:
①α>β的充分不必要條件是sinα>sinβ
②若a,b∈R,ab<0,則
③命題“若x+y≠5,則x≠2或y≠3”的否命題為假命題
④若a≠b,則a3+b3>a2b+ab2
其中真命題的序號(hào)是 . (請(qǐng)把所有真命題的序號(hào)都填上)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com