如圖,已知PA⊥⊙O所在的平面,AB是⊙O的直徑,C是⊙O上任意一點(diǎn),過AAEPCE

求證:AE⊥平面PBC

答案:略
解析:

證明:連結(jié)AC,由于AB是⊙O的直徑,∴ACBC

又由于PA⊥⊙O所在的平面,BC在平面⊙O內(nèi),

PABC(線面垂直的性質(zhì))

PAAC=A,∴BC⊥平面PAC(線面垂直的判定)

又∵AE平面PAC,∴BCAE(線面垂直的性質(zhì))

又∵AEPC,且PCCB=C

AE⊥平面PBC(線面垂直的判定)


提示:

要證AE⊥平面PBC,根據(jù)條件,已知AEPC,因此,只需在平面PBC內(nèi)找到一條與AE垂直的直線即可.在證明的過程中,可充分考慮圓的有關(guān)性質(zhì).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知PA⊥⊙O所在的平面,AB是⊙O的直徑,AB=2,C是⊙O上一點(diǎn),且PA=AC=BC,E,F(xiàn)分別為PC,PB中點(diǎn).
(1)求證:EF∥平面ABC;
(2)求證:EF⊥PC;
(3)求三棱錐B-PAC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知PA⊥⊙O所在的平面,AB是⊙O的直徑,AB=2,C是⊙O上一點(diǎn),且AC=BC,PC與⊙O所在的平面成45°角,E是PC中點(diǎn).F為PB中點(diǎn).
(1)求證:EF∥面ABC;
(2)求證:EF⊥面PAC;
(3)求三棱錐B-PAC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•韶關(guān)一模)如圖,已知PA⊥⊙O所在的平面,AB是⊙O的直徑,AB=4,C是⊙O上一點(diǎn),且PA=AC=BC,
PE
PC
=
PF
PB

(1)求證:EF∥面ABC;
(2)求證:EF⊥AE;
(3)當(dāng)λ=
1
2
時(shí),求三棱錐A-CEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知PA⊥⊙O所在的平面,AB是⊙O的直徑,AB=2,C是⊙O上一點(diǎn),且AC=BC,PC與⊙O所在的平面成45°角,E是PC中點(diǎn),F(xiàn)為PB中點(diǎn).
(Ⅰ)求證:EF⊥面PAC;
(Ⅱ)求C-ABP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:已知PA⊥⊙O所在的平面,AB是⊙O的直徑,

C是異于A、B的⊙O上任意一點(diǎn),過A作AE⊥PC于E ,

求證:AE⊥平面PBC。

查看答案和解析>>

同步練習(xí)冊(cè)答案