|
|
過(guò)點(diǎn)P的直線l與圓x2+y2=1有公共點(diǎn),則直線l的傾斜角的取值范圍是
|
[ ] |
A. |
|
B. |
|
C. |
|
D. |
|
|
|
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知曲線г上的點(diǎn)到點(diǎn)F(0,1)的距離比它到直線y=-3的距離小2.
(1)求曲線г的方程;
(2)曲線г在點(diǎn)P處的切線l與x軸交于點(diǎn)A.直線y=3分別與直線l及y軸交于點(diǎn)M,N,以MN為直徑作圓C,過(guò)點(diǎn)A作圓C的切線,切點(diǎn)為B,試探究:當(dāng)點(diǎn)P在曲線г上運(yùn)動(dòng)(點(diǎn)P與原點(diǎn)不重合)時(shí),線段AB的長(zhǎng)度是否發(fā)生變化?證明你的結(jié)論.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AB⊥BC,AA1=AC=2,E、F分別為A1C1、BC的中點(diǎn).
(1)求證:平面ABE⊥平面B1BCC1;
(2)求證:C1F∥平面ABE;
(3)求三棱錐E-ABC的體積.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)函數(shù)f(x)=sin(ωx+φ),A>0,ω>0,若f(x)在區(qū)間上具有單調(diào)性,且,則f(x)的最小正周期為_(kāi)_______.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)i是虛數(shù)單位,復(fù)數(shù)
|
[ ] |
A. |
-i
|
B. |
i
|
C. |
-1
|
D. |
1
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
數(shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N+
(1)證明:數(shù)列是等差數(shù)列;
(2)設(shè),求數(shù)列{bn}的前n項(xiàng)和Sn.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)F1、F2分別為雙曲線的左、右焦點(diǎn),若在雙曲線右支上存在點(diǎn)P,滿足PF2=F1F2,且F2到直線PF1的距離等于雙曲線的實(shí)軸長(zhǎng),則該雙曲線的漸近線方程為_(kāi)_______.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知x>0,y>0,若+>m2+2 m恒成立,則實(shí)數(shù)m的取值范圍是
|
[ ] |
A. |
m≥4或m≤-2
|
B. |
m≥2或m≤-4
|
C. |
-2<m<4
|
D. |
-4<m<2
|
|
|
查看答案和解析>>