【題目】如圖,在直角梯形ABCP中,CP∥AB,CP⊥CB,,CP=2,D是CP的中點(diǎn),將△PAD沿AD折起,使得PD⊥面ABCD.

(1)求證:平面PAD⊥平面PCD;

(2)若E是PC的中點(diǎn),求三棱錐D﹣PEB的體積.

【答案】(1)見解析;(2)

【解析】

(1)由PD⊥底面ABCD,得PD⊥AD.結(jié)合CP∥AB,CP⊥CB,AB=BC,可得ABCD為正方形,得到AD⊥CD,則AD⊥底面PCD,再由面面垂直的判定得平面PAD⊥底面PCD;
(2)由PD=DC,EPC的中點(diǎn),得DE⊥PC.結(jié)合(1)知AD⊥底面PCD,得AD⊥DE.從而得到BC⊥DE.進(jìn)一步得到DE⊥底面PBC.然后求解直角三角形得到三角形PBC的面積代入體積公式得答案.

(1)證明:∵PD⊥底面ABCD,∴PD⊥AD.

又由于CP∥AB,CP⊥CB,AB=BC,∴ABCD為正方形,

∴AD⊥CD,又PD∩CD=D,故AD⊥底面PCD,

∵AD平面PAD,∴平面PAD⊥底面PCD;

(2)解:∵PD=DC,EPC的中點(diǎn),∴DE⊥PC.

由(1)知有AD⊥底面PCD,∴AD⊥DE.

由題意得AD∥BC,故BC⊥DE.

于是,由BC∩PC=C,可得DE⊥底面PBC.

∴DE=,PC=2,

∵AD⊥底面PCD,∴AD⊥CP,

∵AD∥BC,∴AD⊥BC.

= =×=

=×DE×=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N*
(1)證明:數(shù)列{ }是等差數(shù)列;
(2)設(shè)bn=3n ,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位將舉辦慶典活動(dòng),要在廣場(chǎng)上豎立一形狀為等腰梯形的彩門BADC (如圖),設(shè)計(jì)要求彩門的面積為S (單位:m2)高為h(單位:m)(S,h為常數(shù)),彩門的下底BC固定在廣場(chǎng)地面上,上底和兩腰由不銹鋼支架構(gòu)成,設(shè)腰和下底的夾角為α,不銹鋼支架的長(zhǎng)度和記為l.
(1)請(qǐng)將l表示成關(guān)于α的函數(shù)l=f(α);
(2)問當(dāng)α為何值時(shí)l最?并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2.

(1)求{an}的通項(xiàng)公式.

(2)設(shè)等比數(shù)列{bn}滿足b2=a3,b3=a7.問:b6與數(shù)列{an}的第幾項(xiàng)相等?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,輸出s的值為(  )

A.8
B.9
C.27
D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上移動(dòng)時(shí) 的內(nèi)心的軌跡方程為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京市某年11月1日—20日監(jiān)測(cè)最高最低溫度及差值數(shù)據(jù)如下:

日期

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

最高溫度(℃)

20

16

14

20

20

20

18

15

12

11

12

12

13

9

8

6

13

11

10

14

最低溫度(℃)

5

4

2

4

9

6

9

3

-1

0

5

1

4

-1

-4

-2

-1

0

1

3

差值(℃)

15

12

12

16

11

14

9

12

13

11

7

11

9

10

12

8

14

11

9

11

(Ⅰ)完成下面的頻率分布表及頻率分布直方圖,并寫出頻率分布直方圖中的值;

(Ⅱ)從日溫差大于等于的這些天中,隨機(jī)選取2天.求這兩天中至少有一天的溫差在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某地一天從 6 ~ 14 時(shí)的溫度變化曲線近似滿足函數(shù):,則中午 12 點(diǎn)時(shí)最接近的溫度為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某小學(xué)隨機(jī)抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖).若要從身高在[100,110),[110,120),[120,130)三組內(nèi)的學(xué)生中,用分層抽樣的方法選取28人參加一項(xiàng)活動(dòng),則從身高在[120,130)內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案