【題目】已知圓C過點A(1,2)和B(1,10),且與直線x﹣2y﹣1=0相切.
(1)求圓C的方程;
(2)設(shè)P為圓C上的任意一點,定點Q(﹣3,﹣6),當(dāng)點P在圓C上運動時,求線段PQ中點M的軌跡方程.

【答案】
(1)解:圓心顯然在線段AB的垂直平分線y=6上,設(shè)圓心為(a,6),半徑為r,則:

圓C的標(biāo)準(zhǔn)方程為(x﹣a)2+(y﹣6)2=r2

由點B在圓上得:(1﹣a)2+(10﹣6)2=r2,

又圓C與直線x﹣2y﹣1=0,有r=

于是

解得: ,或

所以圓C的標(biāo)準(zhǔn)方程為(x﹣3)2+(y﹣6)2=20,或(x+7)2+(y﹣6)2=80


(2)解:設(shè)M點坐標(biāo)為(x,y),P點坐標(biāo)為(x0,y0),

由M為PQ的中點,則 ,即:

又點P(x0,y0)在圓C上,

若圓的方程為(x﹣3)2+(y﹣6)2=20,有: ,

則(2x+3﹣3)2+(2y+6﹣6)2=20,整理得:x2+y2=5

此時點M的軌跡方程為:x2+y2=5.

若圓的方程為(x+7)2+(y﹣6)2=80,有:

則(2x+3+7)2+(2y+6﹣6)2=80,整理得:(x+5)2+y2=20

此時點M的軌跡方程為:(x+5)2+y2=20

綜上所述:點M的軌跡方程為x2+y2=5,或(x+5)2+y2=20


【解析】(1)設(shè)所求圓的方程為(x﹣a)2+(y﹣6)2=r2 , 代入坐標(biāo),可得圓心與半徑,即可求圓C的方程;(2)分類討論,利用代入法,求線段PQ中點M的軌跡方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱 中,底面 是邊長為2的正方形, 分別為線段 的中點.

(1)求證: ||平面 ;
(2)四棱柱 的外接球的表面積為 ,求異面直線 所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)是定義在(0,+∞)上的函數(shù),當(dāng)x>1時,f(x)>0,且滿足
(1)求f(1)的值;
(2)判斷并證明函數(shù)的單調(diào)性;
(3)若f(2)=1,解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列圖象中不能作為函數(shù)圖象的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,其中a為常數(shù).
(1)若a=1,判斷函數(shù)f(x)的奇偶性;
(2)若函數(shù) 在其定義域上是奇函數(shù),求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)偶函數(shù)f(x)(x∈R)的導(dǎo)函數(shù)是函數(shù)f′(x),f(2)=0,當(dāng)x<0時,xf′(x)﹣f(x)>0,則使得f(x)>0成立的x的取值范圍是(
A.(﹣∞,﹣2)∪(0,2)
B.(﹣∞,﹣2)∪(2,+∞)
C.(﹣2,0)∪(2,+∞)
D.(0,2)∪(﹣2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x5 +bx﹣8,且f(﹣2)=10,則f(2)=( )
A.﹣26
B.﹣18
C.﹣10
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)實數(shù)x,y滿足條件 ,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則 的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:x2=2py(p>0),過其焦點作斜率為1的直線l交拋物線C于M、N兩點,且|MN|=16. (Ⅰ)求拋物線C的方程;
(Ⅱ)已知動圓P的圓心在拋物線C上,且過定點D(0,4),若動圓P與x軸交于A、B兩點,且|DA|<|DB|,求 的最小值.

查看答案和解析>>

同步練習(xí)冊答案