已知f(x)=sin(-2x+
π
6
)+
3
2
,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間.
(2)函數(shù)f(x)的圖象可以由函數(shù)y=sin2x(x∈R)的圖象經(jīng)過怎樣的變換得到?
考點:三角函數(shù)的周期性及其求法,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)根據(jù)f(x)=sin(-2x+
π
6
)+
3
2
,可得函數(shù)的周期,即函數(shù) y=sin(2x-
π
6
)的減區(qū)間.令
π
2
+2kπ
<2x-
π
6
2
+2kπ
,求得x的范圍,可得f(x)的增區(qū)間.
(2)根據(jù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.
解答: 解:(1)∵f(x)=sin(-2x+
π
6
)+
3
2
=-sin(2x-
π
6
)+
3
2
,
∴函數(shù)的最小正周期為
2
=π,函數(shù)f(x)的單調(diào)增區(qū)間即函數(shù)y=sin(2x-
π
6
)的減區(qū)間.
π
2
+2kπ
<2x-
π
6
2
+2kπ
,解得kπ+
π
3
<x<kπ+
6
,k∈z.
故f(x)的增區(qū)間為[kπ+
π
3
,kπ+
6
],k∈z.
(2)把函數(shù)y=sin2x(x∈R)的圖象向左平移
π
12
個單位,可得函數(shù)y=sin2(x+
π
12
)=sin(2x+
π
6
)的圖象;
再把所得圖象向上平移
3
2
個單位,可得函數(shù)y=sin(2x+
π
6
)+
3
2
的圖象;
再把所得圖象向關(guān)于y軸對稱,可得函數(shù)y=sin(-2x+
π
6
)+
3
2
的圖象.
點評:本題主要考查三角函數(shù)的周期性和求法,正弦函數(shù)的單調(diào)性,y=Asin(ωx+φ)的圖象變換規(guī)律,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

化簡:(sinα+cosα)2=( 。
A、1+sin2α
B、1-sinα
C、1-sin2α
D、1+sinα

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知cosα=-
4
5
,求sinα的值;
(2)已知tanα=3,計算sin2α+sinαcosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,且bsinA=acosB,D是BC延長線上的一點,AC=5,AD=7,CD=3.
(1)求∠ACD的大小和∠ACD的面積;
(2)求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2012年4月開始,大蒜價格上漲較快.某地準備建一個圓形大蒜儲備庫,如圖所示,它的斜對面是一條公路BC,從中心O處向東走1km是儲備中心的邊界上的點A,接著向東再走2km到達公路上的點B;從O向正北方向3km到達公路的另一點C.
(1)建立適當?shù)淖鴺讼,求圓O及直線BC的方程;
(2)現(xiàn)在準備在儲備庫的邊界上選一點D,修建一條由D通往公路BC的專用線DE,從成本考慮,使得所修的專用線最短,求DE的長度及點D的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosα=
2
3
,且-
π
2
<α<0,求
tan(-α-π)sin(2π+α)
cos(-α)tan(π+α)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊為a,b,c,且bsinA=
3
acosB.
(Ⅰ)求角B的大。
(Ⅱ)若b=
3
,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某學校為了增強學生對消防安全知識的了解,舉行了一次消防安全知識競賽,其中一道題是連線題,要求將4種不同的工具與它們的4種不同的用途一對一連線,規(guī)定:每連對一條得5分,連錯一條得-2分.某參賽者隨機用4條線把消防工具與用途一對一全部連接起來.
(1)求該參賽者恰好連對一條的概率;
(2)設X為該參賽者此題的得分,求X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

盒子中裝有大小質(zhì)地都相同的5個球,其中紅色1個,白色2個,藍色2個.現(xiàn)從盒子中取出兩個球(每次只取一個,并且取出后放回),則這兩個球顏色相同的概率為
 

查看答案和解析>>

同步練習冊答案