【題目】如圖所示,四棱錐中,底面
是平行四邊形,
平面
,
,
,
是
中點(diǎn),點(diǎn)
在棱
上移動(dòng).
(1)若,求證:
;
(2)若,當(dāng)點(diǎn)
為
中點(diǎn)時(shí),求
與平面
所成角的大小.
【答案】(1)見解析;(2).
【解析】
(1)先證明平面
,得到
后可證
平面
,從而得到要證明的線線垂直.
(2)連接,過
作
的垂線,垂足為
,可證明
為
與平面
所成角,利用解直角三角形的方法可求
的大小.
(1)因?yàn)樗倪呅?/span>為平行四邊形,所以
,因?yàn)?/span>
,故
.
因?yàn)?/span>平面
,
平面
,故
,
因?yàn)?/span>,所以
平面
.
因?yàn)?/span>平面
,所以
.
因?yàn)?/span>,
是
中點(diǎn),故
.
因?yàn)?/span>,所以
平面
,而
平面
,故
.
(2)連接,故
作
的垂線,垂足為
.
因?yàn)?/span>平面
,
平面
,故
,同理
.
在中,因?yàn)?/span>
,故
.
在中,
,故
.
在,
,故
.
在中,
,故
.
所以,所以
,同理
.
因?yàn)?/span>,所以
平面
.
因?yàn)?/span>平面
,故平面
平面
.
因?yàn)?/span>,
平面
,平面
平面
,
所以平面
,故
為
與平面
所成角,
在中,
,故
,
所以與平面
所成角為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是正方形,四邊形
為矩形,
,
為
的中點(diǎn).
(1)求證:平面
;
(2)二面角的大小可以為
嗎?若可以求出此時(shí)
的值,若不可以,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,
為矩形,
是以
為直角的等腰直角三角形,平面
平面
.
(Ⅰ)證明:平面平面
;
(Ⅱ)為直線
的中點(diǎn),且
,求二面角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,過
的直線
與橢圓
相交于
兩點(diǎn),且與
軸相交于
點(diǎn).
(1)若,求直線
的方程;
(2)設(shè)關(guān)于
軸的對(duì)稱點(diǎn)為
,證明:直線
過
軸上的定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“挑戰(zhàn)不可能”的電視節(jié)目上,甲、乙、丙三個(gè)人組成的解密團(tuán)隊(duì)參加一項(xiàng)解密挑戰(zhàn)活動(dòng),規(guī)則是由密碼專家給出題目,然后由個(gè)人依次出場解密,每人限定時(shí)間是
分鐘內(nèi),否則派下一個(gè)人.
個(gè)人中只要有一人解密正確,則認(rèn)為該團(tuán)隊(duì)挑戰(zhàn)成功,否則挑戰(zhàn)失敗.根據(jù)甲以往解密測試情況,抽取了甲
次的測試記錄,繪制了如下的頻率分布直方圖.
(1)若甲解密成功所需時(shí)間的中位數(shù)為,求
、
的值,并求出甲在
分鐘內(nèi)解密成功的頻率;
(2)在“挑戰(zhàn)不可能”節(jié)目上由于來自各方及自身的心理壓力,甲,乙,丙解密成功的概率分別為,其中
表示第
個(gè)出場選手解密成功的概率,并且
定義為甲抽樣中解密成功的頻率代替,各人是否解密成功相互獨(dú)立.
①求該團(tuán)隊(duì)挑戰(zhàn)成功的概率;
②該團(tuán)隊(duì)以從小到大的順序按排甲、乙、丙三個(gè)人上場解密,求團(tuán)隊(duì)挑戰(zhàn)成功所需派出的人員數(shù)目
的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知圓C:
,橢圓E:
(
)的右頂點(diǎn)A在圓C上,右準(zhǔn)線與圓C相切.
(1)求橢圓E的方程;
(2)設(shè)過點(diǎn)A的直線l與圓C相交于另一點(diǎn)M,與橢圓E相交于另一點(diǎn)N.當(dāng)時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù)
,其中
,
是
的一個(gè)極值點(diǎn),且
.
(1)討論的單調(diào)性
(2)求實(shí)數(shù)和a的值
(3)證明
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com