【題目】已知函數(shù) .

(1)討論的單調(diào)性;

(2)若,求的取值范圍.

【答案】(1)上遞增,在上遞減;(2).

【解析】試題分析:(1)1)當(dāng)時(shí),,在上單調(diào)遞減; 2)當(dāng)時(shí),.①當(dāng)時(shí),,單調(diào)遞減;②當(dāng)時(shí),上大于0,上單調(diào)遞增,上小于0,上單調(diào)遞減;

(2)①當(dāng)時(shí),,滿(mǎn)足題意;②當(dāng)時(shí),,不滿(mǎn)足題意;③當(dāng)時(shí),,不滿(mǎn)足題意;④當(dāng)時(shí),由(1)可知 ,則將上式寫(xiě)為,令,解得 當(dāng)時(shí),,滿(mǎn)足題意;當(dāng)時(shí),,,不滿(mǎn)足題意;綜上可得,當(dāng)時(shí),.

試題解析:(1)1)當(dāng)時(shí),,在上單調(diào)遞減;

2)當(dāng)時(shí),.

①當(dāng)時(shí),在定義域上,,,單調(diào)遞減;

②當(dāng)時(shí),的解為,(負(fù)值舍去),

上大于0,上單調(diào)遞增,

上小于0,上單調(diào)遞減;

綜上所述,當(dāng)時(shí),單調(diào)遞減;

當(dāng)時(shí),上單調(diào)遞增,在上單調(diào)遞減;

(2)①當(dāng)時(shí),,滿(mǎn)足題意;

②當(dāng)時(shí), ,不滿(mǎn)足題意;

③當(dāng)時(shí),,

由于,

所以為兩負(fù)數(shù)的乘積大于0,即,不滿(mǎn)足題意;

④當(dāng)時(shí),由(1)可知

,則將上式寫(xiě)為,令,解得,此時(shí),

而當(dāng)時(shí),,滿(mǎn)足題意;

當(dāng)時(shí),,不滿(mǎn)足題意;

綜上可得,當(dāng)時(shí),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右兩個(gè)焦點(diǎn)分別為,離心率,短軸長(zhǎng)為2.

(1)求橢圓的方程;

(2)點(diǎn)為橢圓上的一動(dòng)點(diǎn)(非長(zhǎng)軸端點(diǎn)),的延長(zhǎng)線(xiàn)與橢圓交于點(diǎn), 的延長(zhǎng)線(xiàn)與橢圓交于點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若不等式的解集為,求實(shí)數(shù)的值;

(2)在(1)的條件下,若存在實(shí)數(shù)使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校用簡(jiǎn)單隨機(jī)抽樣方法抽取了30名同學(xué),對(duì)其每月平均課外閱讀時(shí)間(單位:小時(shí))進(jìn)行調(diào)查,莖葉圖如圖:

若將月均課外閱讀時(shí)間不低于30小時(shí)的學(xué)生稱(chēng)為“讀書(shū)迷”.

(1)將頻率視為概率,估計(jì)該校900名學(xué)生中“讀書(shū)迷”有多少人?

(2)從已抽取的7名“讀書(shū)迷”中隨機(jī)抽取男、女“讀書(shū)迷”各1人,參加讀書(shū)日宣傳活動(dòng).

(i)共有多少種不同的抽取方法?

(ii)求抽取的男、女兩位“讀書(shū)迷”月均讀書(shū)時(shí)間相差不超過(guò)2小時(shí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合.

(1)若,問(wèn)是否存在使;

(2)對(duì)于任意的,是否一定有?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某淘寶店經(jīng)過(guò)對(duì)春節(jié)七天假期的消費(fèi)者進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)在金額不超過(guò)1000元的消費(fèi)者中男女比例為,該店按此比例抽取了100名消費(fèi)者進(jìn)行進(jìn)一步分析,得到下表女性消費(fèi)情況:

消費(fèi)金額(元)

人數(shù)

5

10

15

47

3

男性消費(fèi)情況:

消費(fèi)金額(元)

人數(shù)

2

3

10

3

2

若消費(fèi)金額不低于600元的網(wǎng)購(gòu)者為“網(wǎng)購(gòu)達(dá)人”,低于600元的網(wǎng)購(gòu)者為“非網(wǎng)購(gòu)達(dá)人”

(1)分別計(jì)算女性和男性消費(fèi)的平均數(shù),并判斷平均消費(fèi)水平高的一方“網(wǎng)購(gòu)達(dá)人”出手是否更闊綽?

(2)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)如下列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“是否為‘網(wǎng)購(gòu)達(dá)人’與性別有關(guān)”.

女性

男性

合計(jì)

“網(wǎng)購(gòu)達(dá)人”

“非網(wǎng)購(gòu)達(dá)人”

合計(jì)

附: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,正確的是:( )

A. 命題“若,則”的否命題為“若,則

B. 命題“存在,使得”的否定是:“任意,都有

C. 若命題“非”與命題“”都是真命題,那么命題一定是真命題

D. 命題“若,則”的逆命題是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0,b>0,且 是3a與3b的等比中項(xiàng),若 + ≥2m2+3m恒成立,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題。
(1)已知點(diǎn)A(﹣1,﹣2)和B(﹣3,6),直線(xiàn)l經(jīng)過(guò)點(diǎn)P(1,﹣5).且與直線(xiàn)AB平行,求直線(xiàn)l的方程
(2)求垂直于直線(xiàn)x+3y﹣5=0,且與點(diǎn)P(﹣1,0)的距離是 的直線(xiàn)m的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案