如圖,圓C:x2+y2-2x-8=0內有一點P(2,2),過點P作直線l交圓于A,B兩點.

(1)當直線l經(jīng)過圓心C時,求直線l的方程;

(2)當弦AB被點P平分時,寫出直線l程;

(3)當直線l傾斜角為45°時,求△ABC的面積.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線x2=2py(p>0).拋物線上的點M(m,1)到焦點的距離為2
(1)求拋物線的方程和m的值;
(2)如圖,P是拋物線上的一點,過P作圓C:x2+(y+1)2=1的兩條切線交x軸于A,B兩點,若△CAB的面積為
3
3
5
,求點P坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M、N(點M在點N的左側),且|MN|=3,
(Ⅰ)求圓C的方程;
(Ⅱ)過點M任作一條直線與圓O:x2+y2=4相交于兩點A、B,連接AN、BN.求證:∠ANM=∠BNM.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知點F(0,1),直線L:y=-2,及圓C:x2+(y-3)2=1.
(1)若動點M到點F的距離比它到直線L的距離小1,求動點M的軌跡E的方程;
(2)過點F的直線g交軌跡E于G(x1,y1)、H(x2,y2)兩點,求證:x1x2 為定值;
(3)過軌跡E上一點P作圓C的切線,切點為A、B,要使四邊形PACB的面積S最小,求點P的坐標及S的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,圓O:x2+y2=
π
2
 
內的正弦曲線y=sinx與x軸圍成的區(qū)域記為M(圖中陰影部分),隨機向圓O內投一個點P,則點P落在區(qū)域M內的概率是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•浙江模擬)已知拋物線x2=4y.
(Ⅰ)過拋物線焦點F,作直線交拋物線于M,N兩點,求|MN|最小值;
(Ⅱ)如圖,P是拋物線上的動點,過P作圓C:x2+(y+1)2=1的切線交直線y=-2于A,B兩點,當PB恰好切拋物線于點P時,求此時△PAB的面積.

查看答案和解析>>

同步練習冊答案