1.下列求導(dǎo)運(yùn)算正確的是( 。
A.(x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$B.(x2cosx)′=-2xsinx
C.(log2(x2+2x+3))'=$\frac{x}{({x}^{2}+2x+3)ln2}$D.(log2x)′=$\frac{1}{xln2}$

分析 根據(jù)導(dǎo)數(shù)的運(yùn)算及導(dǎo)數(shù)運(yùn)算法則,分別判斷,即可求得答案.

解答 解:對于A項:(x+$\frac{1}{x}$)′=1-$\frac{1}{{x}^{2}}$,故A錯誤;
對于B項:(x2cosx)′=2xcosx-x2sinx,故B錯誤;
對于C項:(log2(x2+2x+3))'=$\frac{2x+2}{({x}^{2}+2x+3)ln2}$,故C錯誤;
對于D項:(log2x)′=$\frac{1}{xln2}$,故D項正確,
故選D.

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)算,考查導(dǎo)數(shù)的計算法則,考查計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列關(guān)于命題的敘述,錯誤的個數(shù)為( 。
①p∨q為真命題,則p∧q為真命題
②“x>1”是“l(fā)og${\;}_{\frac{1}{2}}$(x+2)<0”的必要不充分條件
③若“?x∈[0,$\frac{π}{4}$],tanx≤m”是真命題,則實數(shù)m的最小值為1
④命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x+2≠0”
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.2log6$\sqrt{2}$+3log6$\root{3}{3}$=( 。
A.1B.0C.6D.log6$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給出下列四個結(jié)論:
①若n組數(shù)據(jù)(x1,y1)…(xn,yn)的散點(diǎn)都在y=-2x+1上,則相關(guān)系數(shù)r=-1;
②由直線x=$\frac{1}{2}$,x=2,曲線y=$\frac{1}{x}$及x軸圍成的圖形的面積是2ln2;
③已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),P(ξ≤4)=0.79,則P(ξ≤-2)=0.21;
④設(shè)回歸直線方程為$\widehat{y}$=2-2.5x,當(dāng)變量x增加一個單位時,$\widehat{y}$平均增加2個單位.
其中錯誤結(jié)論的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若$cos(\frac{π}{4}-α)=-\frac{4}{5}$,則sin2α=$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若集合A={1,2},N={1,2,3},則滿足A∪X=N的集合X的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}滿足an+1=an+2n+1,a1=1,則a5=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若P(A)=$\frac{3}{4}$,P(B|A)=$\frac{1}{2}$,則P(AB)等于( 。
A.$\frac{2}{3}$B.$\frac{3}{8}$C.$\frac{1}{3}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=ex-1-ax.
(1)討論函數(shù)y=f(x)的單調(diào)性
(2)若對于任意的實數(shù)x,都有f(x)≥1-a,求a的值;
(3)設(shè)g(x)=ex-1+$\frac{1}{2}$x2-2x+m,對任意實數(shù)x,都有g(shù)(x)>0,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案