已知四邊形為菱形,,兩個(gè)正三棱錐(底面是正三角形且頂點(diǎn)在底面上的射影是底面正三角形的中心)的側(cè)棱長(zhǎng)都相等,點(diǎn)分別在上,且.
(Ⅰ)求證:;
(Ⅱ)求平面與底面所成銳二面角的平面角的正切值;
(Ⅲ)求多面體的體積.
(Ⅰ) 見(jiàn)解析(Ⅱ)  (Ⅲ)
(Ⅰ)取中點(diǎn),連、,則


,  





     ……………3分
(Ⅱ)設(shè)在底面的射影分別為,則
由所給的三棱錐均為正三棱錐且兩三棱錐全等,
,且=,∴四邊形為平行四邊形,
,又分別為△,△的中心,
在菱形的對(duì)角線(xiàn)上,
,即∥平面…………………………………5分
設(shè)平面與平面的交線(xiàn)為,取中點(diǎn)連結(jié),

為平面與平面所成二面角的平面角
…………………………7分
中, ,
,
……………………………9分
(Ⅲ設(shè)、上的射影為,則均在直線(xiàn)上,且為平行四邊形,。

 

 
為四棱錐                       

設(shè),則,又,由(1)知

,,又。
設(shè)四棱錐的高為,且    

 在中,

F

 

         
                   ……………13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
   如圖,在四棱錐P-ABCD中,則面PAD⊥底面ABCD,側(cè)棱PA=PD,底面ABCD為直角梯形,其中BCAD,ABADAD=2AB=2BC=2,OAD中點(diǎn)。

(Ⅰ)求證:PO⊥平面ABCD
(Ⅱ)求異面直線(xiàn)PDCD所成角的大;
(Ⅲ)線(xiàn)段AD上是否存在點(diǎn)Q,使得它到平面PCD的距離為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖3:在空間四邊形ABCD中,AC=AD,BC=BD,且E是CD的中點(diǎn).
(1)求證:平面ABE平面BCD;
(2)若F是AB的中點(diǎn),BC=AD,且AB=8,AE=10,求EF的長(zhǎng).
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直三棱柱中,平面,其垂足落在直線(xiàn)上.
(Ⅰ)求證:;
(Ⅱ)若,的中點(diǎn),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖是某直三棱柱(側(cè)棱與底面垂直)被削去上底后的直觀(guān)圖與三視圖的側(cè)視圖、俯視圖.在直觀(guān)圖中,
的中點(diǎn).側(cè)視圖是直角梯形,俯視圖是等腰直角
三角形,有關(guān)數(shù)據(jù)如圖所示.
(Ⅰ)求出該幾何體的體積;
(Ⅱ)求證:EM∥平面ABC;
(Ⅲ) 試問(wèn)在棱DC上是否存在點(diǎn)N,使NM⊥平面?若存在,確定點(diǎn)N的位置;
若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知平行六面體的底面ABCD是菱形,且,(1)證明:;

(II)假定CD=2,,記面為α,面CBD為β,求二面角α -BD -β的平面角的余弦值;
(III)當(dāng)的值為多少時(shí),能使?請(qǐng)給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,
M為AP的中點(diǎn).
(Ⅰ)求證:DM∥平面PCB;                      
(Ⅱ)求直線(xiàn)AD與PB所成角;
(Ⅲ)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題中錯(cuò)誤的是(        ).
A.如果平面⊥平面,那么內(nèi)所有直線(xiàn)都垂直于平面
B.如果平面⊥平面,那么內(nèi)一定存在直線(xiàn)平行于平面
C.如果平面不垂直于平面,那么內(nèi)一定不存在直線(xiàn)垂直于平面
D.如果平面⊥平面,平面⊥平面,,那么平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知菱形的頂點(diǎn)在橢圓上,對(duì)角線(xiàn)所在直線(xiàn)的斜率為1.
(Ⅰ)當(dāng)直線(xiàn)過(guò)點(diǎn)時(shí),求直線(xiàn)的方程;
(Ⅱ)當(dāng)時(shí),求菱形面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案