精英家教網 > 高中數學 > 題目詳情

【題目】已知圓的圓心在直線上,且圓經過曲線軸的交點.

(1)求圓的方程;

(2)已知過坐標原點的直線與圓兩點,若,求直線的方程.

【答案】(1)(2).

【解析】試題分析:

(1)先求出曲線與軸的交點為,再根據圓心在直線,由待定系數法可求得圓的方程為.(2)由題意設直線的方程為,代入圓方程消去整理得,設,由根與系數的關系可得.又由,得,消去后可解得,從而可得到直線方程.

試題解析:

(1)在中,

,得

解得,

所以曲線軸的交點坐標為

設圓的方程為

依題意得,

解得,

所以圓的方程為

(2)解法一:

由題意知直線的斜率顯然存在,故設直線的斜率為,則直線的方程為

消去整理得

,

因為直線與圓兩點,

所以

,

因為,

所以,

所以

解得,

經檢驗得滿足,

所以直線的方程為.

解法二:

如圖取的中點,連接,

,得

所以

解得

所以圓心到直線的距離等于2,

設直線的方程為,即

所以

解得,

所以直線的方程為.

解法三:

設直線的傾斜角為,則直線的參數方程為 (為參數).

代入并整理得:

對應的參數分別為

因為,

所以,

所以

所以

所以

所以,

所以

所以直線的方程為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知,函數Fx=min{2|x1|x22ax+4a2},

其中min{p,q}=

)求使得等式Fx=x22ax+4a2成立的x的取值范圍;

)()求Fx)的最小值ma);

)求Fx)在區(qū)間[0,6]上的最大值Ma.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】小張經營某一消費品專賣店,已知該消費品的進價為每件40元,該店每月銷售量(百件)與銷售單價x(元/件)之間的關系用下圖的一折線表示,職工每人每月工資為1000元,該店還應交付的其它費用為每月10000元.

(1)把y表示為x的函數;

(2)當銷售價為每件50元時,該店正好收支平衡(即利潤為零),求該店的職工人數;

(3)若該店只有20名職工,問銷售單價定為多少元時,該專賣店可獲得最大月利潤?(注:利潤=收入-支出)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知過點A(0,1)且斜率為k的直線l與圓C(x2)2(y3)21交于MN兩點.

(1)k的取值范圍;

(2)12,其中O為坐標原點,求|MN|.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某租賃公司擁有汽車100輛,當每輛車的月租金為3000元時,可全部租出,當每輛車的月租金每增加50元時,未租出的車將會增加一輛,租出的車每輛每月需維護費150元,未租出的車每輛每月需要維護費50元。

1)當每輛車的月租金定為3600元時,能租出多少輛車?

2)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y= 4cos2x+4sinxcosx2,(xR

1)求函數的最小正周期;

2)求函數的最大值及其相對應的x值;

3)寫出函數的單調增區(qū)間;

4)寫出函數的對稱軸

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,曲線是以原點O為中心、為焦點的橢圓的一部分,曲線是以O為頂點、為焦點的拋物線的一部分,A是曲線的交點且為鈍角,若.

(1)求曲線的方程;

(2)過作一條與軸不垂直的直線,分別與曲線依次交于B、C、D、E四點,若GCD中點、HBE中點,問是否為定值?若是求出定值;若不是說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時期的官員獨孤信的印信形狀是半正多面體(圖1.半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現了數學的對稱美.圖2是一個棱數為48的半正多面體,它的所有頂點都在同一個正方體的表面上,且此正方體的棱長為1.則該半正多面體共有________個面,其棱長為_________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2020年初,新冠肺炎疫情襲擊全國,對人民生命安全和生產生活造成嚴重影響.在黨和政府強有力的抗疫領導下,我國控制住疫情后,一方面防止境外疫情輸入,另一方面逐步復工復產,減輕經濟下降對企業(yè)和民眾帶來的損失.為降低疫情影響,某廠家擬在2020年舉行某產品的促銷活動,經調查測算,該產品的年銷售量(即該廠的年產量)萬件與年促銷費用萬元()滿足為常數),如果不搞促銷活動,則該產品的年銷售量只能是2萬件.已知生產該產品的固定投入為8萬元,每生產一萬件該產品需要再投入16萬元,廠家將每件產品的銷售價格定為每件產品年平均成本的1.5倍(此處每件產品年平均成本按元來計算)

1)將2020年該產品的利潤萬元表示為年促銷費用萬元的函數;

2)該廠家2020年的促銷費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

同步練習冊答案