【題目】已知函數(shù)f(x)=2cos22x﹣2,給出下列命題:
①β∈R,f(x+β)為奇函數(shù);
②α∈(0, ),f(x)=f(x+2α)對x∈R恒成立;
③x1 , x2∈R,若|f(x1)﹣f(x2)|=2,則|x1﹣x2|的最小值為 ;
④x1 , x2∈R,若f(x1)=f(x2)=0,則x1﹣x2=kπ(k∈Z).其中的真命題有( )
A.①②
B.③④
C.②③
D.①④
【答案】C
【解析】解:由題意,f(x)=2cos22x﹣2=cos4x﹣1;
對于①,∵f(x)=cos4x﹣1的圖象如圖所示;
函數(shù)f(x+β)的圖象是f(x)的圖象向左或向右平移|β|個(gè)單位,
它不會(huì)是奇函數(shù)的,故①錯(cuò)誤;
對于②,f(x)=f(x+2α),∴cos4x﹣1=cos(4x+8α)﹣1,
∴8α=2kπ,∴α= ,k∈Z;
又α∈(0, ),∴取α= 或 時(shí),
∴f(x)=f(x+2α)對x∈R恒成立,②正確;
對于③,|f(x1)﹣f(x2)|=|cos4x1﹣cos4x2|=2時(shí),
|x1﹣x2|的最小值為 = = ,∴③正確;
對于④,當(dāng)f(x1)=f(x2)=0時(shí),
x1﹣x2=kT=k = (k∈Z),∴④錯(cuò)誤;
綜上,真命題是②③.
故選:C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二倍角的余弦公式的相關(guān)知識(shí)可以得到問題的答案,需要掌握二倍角的余弦公式:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的不等式(ax+1)(ex﹣aex)≥0在(0,+∞)上恒成立,則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,1]
B.[0,1]
C.
D.[0,e]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ln(x+1)+a(x2﹣x),a≥0.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(2)若x>0,f(x)≥0成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=a2x﹣2﹣x定義域?yàn)镽的奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)判斷函數(shù)f(x)在R上的單調(diào)性,并利用函數(shù)單調(diào)性的定義證明;
(3)若不等式f(9x+1)+f(t﹣23x+5)>0在在R上恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=sin (2x+ )的圖象可由函數(shù)y=cosx的圖象( )
A.先把各點(diǎn)的橫坐標(biāo)縮短到原來的 倍,再向左平移 個(gè)單位
B.先把各點(diǎn)的橫坐標(biāo)縮短到原來的 倍,再向右平移 個(gè)單位
C.先把各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,再向左平移 個(gè)單位
D.先把各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,再向右平移 個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若a,b∈[﹣1,1],a+b≠0時(shí),有 >0成立.
(Ⅰ)判斷f(x)在[﹣1,1]上的單調(diào)性,并證明;
(Ⅱ)解不等式:f(2x﹣1)<f(1﹣3x);
(Ⅲ)若f(x)≤m2﹣2am+1對所有的a∈[﹣1,1]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,該幾何體是由一個(gè)直三棱柱ADE﹣BCF和一個(gè)正四棱錐P﹣ABCD組合而成,AD⊥AF,AE=AD=2.
(Ⅰ)證明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱錐P﹣ABCD的高h(yuǎn),使得二面角C﹣AF﹣P的余弦值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=a|log2x|+1(a≠0),定義函數(shù)F(x)= ,給出下列命題:
①F(x)=|f(x);
②函數(shù)F(x)是偶函數(shù);
③當(dāng)a<0時(shí),若0<m<n<1,則有F(m)﹣F(n)<0成立;
④當(dāng)a>0時(shí),函數(shù)y=F(x)﹣2有4個(gè)零點(diǎn).
其中正確命題的序號為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 為奇函數(shù)
(1)求 的值.
(2)探究 的單調(diào)性,并證明你的結(jié)論.
(3)求滿足 的 的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com