【題目】某學(xué)校的平面示意圖為如下圖五邊形區(qū)域,其中三角形區(qū)域為生活區(qū),四邊形區(qū)域為教學(xué)區(qū), 為學(xué)校的主要道路(不考慮寬度). .

(1)求道路的長度;(2)求生活區(qū)面積的最大值.

【答案】(1);(2).

【解析】試題分析:(1)連接BD,由余弦定理可得BD,由已知可求 , ,可得 ,利用勾股定理即可得解 的值. (2)設(shè) ,由正弦定理,可得 ,利用三角函數(shù)恒等變換的應(yīng)用化簡可得,結(jié)合范圍3,利用正弦函數(shù)的性質(zhì)可求面積的最大值,從而得解.

試題解析:

1

如圖,連接,在中,由余弦定理得:

.

,,

.

中,所以.

2)設(shè),,.

中,由正弦定理,得

.

.

,.

當(dāng),即時(shí), 取得最大值為,

即生活區(qū)面積的最大值為.

注:第(2)問也可用余弦定理和均值不等式求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(Ⅰ)命題“ ”為假命題,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若“x2+2x﹣8<0”是“x﹣m>0”的充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的不等式4x+x﹣a≤ 在x∈[0, ]上恒成立,則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,﹣ ]
B.(0,1]
C.[﹣ ,1]
D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的連續(xù)函數(shù)g(x)滿足:①當(dāng)x>0時(shí),g′(x)>0恒成立(g′(x)為函數(shù)g(x)的導(dǎo)函數(shù));②對(duì)任意的x∈R都有g(shù)(x)=g(﹣x),又函數(shù)f(x)滿足:對(duì)任意的x∈R,都有 成立.當(dāng) 時(shí),f(x)=x3﹣3x.若關(guān)于x的不等式g[f(x)]≤g(a2﹣a+2)對(duì)x∈[﹣ , ]恒成立,則a的取值范圍是(
A.a∈R
B.0≤a≤1
C.
D.a≤0或a≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信紅包是一款可以實(shí)現(xiàn)收發(fā)紅包、查收記錄和提現(xiàn)的手機(jī)應(yīng)用.某網(wǎng)絡(luò)運(yùn)營商對(duì)甲、乙兩個(gè)品牌各5種型號(hào)的手機(jī)在相同環(huán)境下?lián)尩降募t包個(gè)數(shù)進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):

手機(jī)品牌 型號(hào)

I

II

III

IV

V

甲品牌(個(gè))

4

3

8

6

12

乙品牌(乙)

5

7

9

4

3

手機(jī)品牌 紅包個(gè)數(shù)

優(yōu)

非優(yōu)

合計(jì)

甲品牌(個(gè))

乙品牌(個(gè))

合計(jì)

(1)如果搶到紅包個(gè)數(shù)超過5個(gè)的手機(jī)型號(hào)為“優(yōu)”,否則為“非優(yōu)”,請(qǐng)完成上述2×2列聯(lián)表,據(jù)此判斷是否有85%的把握認(rèn)為搶到的紅包個(gè)數(shù)與手機(jī)品牌有關(guān)?

(2)如果不考慮其他因素,要從甲品牌的5種型號(hào)中選出3種型號(hào)的手機(jī)進(jìn)行大規(guī)模宣傳銷售.

①求在型號(hào)I被選中的條件下,型號(hào)II也被選中的概率;

②以表示選中的手機(jī)型號(hào)中搶到的紅包超過5個(gè)的型號(hào)種數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

下面臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: ,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)的坐標(biāo)分別為,直線相交于點(diǎn),且它們的斜率之積是,點(diǎn)的軌跡為曲線.

(Ⅰ)求的方程;

(Ⅱ)過點(diǎn)作直線交曲線兩點(diǎn),交軸于點(diǎn),若, ,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線 的右焦點(diǎn)為F(2,0),設(shè)A、B為雙曲線上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),AF的中點(diǎn)為M,BF的中點(diǎn)為N,若原點(diǎn)O在以線段MN為直徑的圓上,直線AB的斜率為 ,則雙曲線的離心率為(
A.4
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進(jìn)行射擊比賽,各射擊4局,每局射擊10次,射擊命中目標(biāo)得1分,未命中目標(biāo)得0分.兩人4局的得分情況如下:

(1)已知在乙的4局比賽中隨機(jī)選取1局時(shí),此局得分小于6分的概率不為零,且在4局比賽中,乙的平均得分高于甲的平均得分,求的值;

(2)如果 ,從甲、乙兩人的4局比賽中隨機(jī)各選取1局,并將其得分分別記為,求的概率;

(3)在4局比賽中,若甲、乙兩人的平均得分相同,且乙的發(fā)揮更穩(wěn)定,寫出的所有可能取值.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)椋ī?,1),則函數(shù)f(2x﹣1)的定義域?yàn)椋?/span>
A.(﹣ ,1)
B.(﹣5,1)
C.( ,1)
D.(﹣2,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案