【題目】已知為坐標(biāo)原點(diǎn), , 是橢圓上的點(diǎn),且,設(shè)動點(diǎn)滿足.
(Ⅰ)求動點(diǎn)的軌跡的方程;
(Ⅱ)若直線與曲線交于兩點(diǎn),求三角形面積的最大值.
【答案】(Ⅰ);(Ⅱ).
【解析】試題分析:
(Ⅰ)設(shè)點(diǎn), , ,結(jié)合整理變形可得動點(diǎn)的軌跡的方程為.
(Ⅱ)聯(lián)立直線與橢圓方程可得,理由弦長公式有 ,且點(diǎn)到直線的距離,據(jù)此可得面積函數(shù): ,即三角形面積的最大值為.
試題解析:
(Ⅰ)設(shè)點(diǎn), , ,
則由,得,
即, ,因?yàn)辄c(diǎn)在橢圓上,
所以, ,
故
,
因?yàn)?/span>,
所以動點(diǎn)的軌跡的方程為.
(Ⅱ)將曲線與直線聯(lián)立: ,消得: ,
∵直線與曲線交于兩點(diǎn),設(shè), ,
∴ ,又∵,得,
, ,
∴ ,
∵點(diǎn)到直線的距離,
∴
,當(dāng)時等號成立,滿足(*)
∴三角形面積的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程是,將向上平移2個單位得到曲線.
(1)求曲線的極坐標(biāo)方程;
(2)直線的參數(shù)方程為(為參數(shù)),判斷直線與曲線的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),已知點(diǎn)及線段,在線段上任取一點(diǎn),線段長度的最小值稱為“點(diǎn)到線段的距離”,記為.
(1)設(shè)點(diǎn),線段 ,求;
(2)設(shè), , , ,線段,線段,若點(diǎn)滿足,求關(guān)于的函數(shù)解析式,并寫出該函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行了一次“環(huán)保知識競賽”,全校學(xué)生參加了這次競賽,為了了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取正整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),請根據(jù)下面尚未完成并有局部污損的頻率分布表(如圖所示),解決下列問題.
組別 | 分組 | 頻數(shù) | 頻率 |
第1組 | [50,60) | 8 | 0.16 |
第2組 | [60,70) | a | ■ |
第3組 | [70,80) | 20 | 0.40 |
第4組 | [80,90) | ■ | 0.08 |
第5組 | [90,100] | 2 | b |
合計(jì) | ■ | ■ |
(1)求出a,b的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到廣場參加環(huán)保知識的志愿宣傳活動.
①求所抽取的2名同學(xué)中至少有1名同學(xué)來自第5組的概率;
②求所抽取的2名同學(xué)來自同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上,離心率為的橢圓過點(diǎn).
(1)求橢圓的方程;
(2)設(shè)橢圓與軸的非負(fù)半軸交于點(diǎn),過點(diǎn)作互相垂直的兩條直線,分別交橢圓于兩點(diǎn),連接,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是圓內(nèi)的一個定點(diǎn),點(diǎn)是圓上的任意一點(diǎn),線段的垂直平分線和半徑相交于點(diǎn),當(dāng)點(diǎn)在圓上運(yùn)動時,點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)點(diǎn), ,直線與軸交于點(diǎn),直線與軸交于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;(Ⅱ)若c=,△ABC的面積為,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)滿足以下兩個條件的有窮數(shù)列, , , 為階“期待數(shù)列”:
①;
②.
()分別寫出一個單調(diào)遞增的階和階“期待數(shù)列”.
()若某階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項(xiàng)公式.
()記階“期待數(shù)列”的前項(xiàng)和為,試證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一張紙的長、寬分別為2a,2a,A,B,C,D分別是其四條邊的中點(diǎn),現(xiàn)將其沿圖中虛線折起,使得P1,P2,P3,P4四點(diǎn)重合為一點(diǎn)P,從而得到一個多面體,關(guān)于該多面體的下列命題,正確的是________(寫出所有正確命題的序號).
①該多面體是三棱錐;②平面BAD⊥平面BCD;
③平面BAC⊥平面ACD;④該多面體外接球的表面積為5πa2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com