【題目】在平面直角坐標(biāo)系中,點(diǎn),直線與動直線的交點(diǎn)為,線段的中垂線與動直線的交點(diǎn)為

1求動點(diǎn)的軌跡的方程;

2過動點(diǎn)作曲線的兩條切線,切點(diǎn)分別為, ,求證: 的大小為定值.

【答案】1曲線的方程為.(2詳見解析

【解析】試題分析:根據(jù)題意動點(diǎn)到定點(diǎn)距離等于到定直線距離,符合拋物線定義,寫出拋物線方程,第二步設(shè)出直線方程,聯(lián)立方程組,根據(jù)根與系數(shù)關(guān)系可得,可知為定值.

試題解析:1因?yàn)橹本垂直,所以為點(diǎn)到直線的距離

連結(jié)因?yàn)?/span>為線段的中垂線與直線的交點(diǎn),所以

所以點(diǎn)的軌跡是拋物線

焦點(diǎn)為,準(zhǔn)線為

所以曲線的方程為

2由題意,過點(diǎn)的切線斜率存在,設(shè)切線方程為,

聯(lián)立

所以,即*),

因?yàn)?/span>,所以方程(*)存在兩個不等實(shí)根,設(shè)為,

因?yàn)?/span>所以,為定值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}的前n項(xiàng)和Sn=2n+r.
(1)求實(shí)數(shù)r的值和{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=1,bn+1﹣bn=log2an+1 , 求bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=0,nan+1=Sn+n(n+1).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足an+log3n=log3bn , 求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a、b、c分別是角A、B、C的對邊,且 ,
(1)求角B的大;
(2)若 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)支出x與銷售額(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):
如果y與x之間具有線性相關(guān)關(guān)系.

(1)作出這些數(shù)據(jù)的散點(diǎn)圖;
(2)求這些數(shù)據(jù)的線性回歸方程;
(3)預(yù)測當(dāng)廣告費(fèi)支出為9百萬元時的銷售額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,求函數(shù)的單調(diào)增區(qū)間;

2)設(shè)函數(shù) 若函數(shù)的最小值是,的值;

3若函數(shù) 的定義域都是,對于函數(shù)的圖象上的任意一點(diǎn)在函數(shù)的圖象上都存在一點(diǎn),使得,其中是自然對數(shù)的底數(shù), 為坐標(biāo)原點(diǎn)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中,PD⊥平面ABCD,底面是邊長是1的正方形,側(cè)棱PA與底面成45°的角,M,N,分別是AB,PC的中點(diǎn);

(1)求證:MN∥平面PAD;
(2)求四棱錐P﹣ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知球內(nèi)接四棱錐的高為相交于,球的表面積為,若中點(diǎn).

(1)求異面直線所成角的余弦值;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把邊長為2的正方形ABCD沿對角線BD折起并連接AC形成三棱錐C﹣ABD,其正視圖、俯視圖均為等腰直角三角形(如圖所示),則三棱錐C﹣ABD的表面積為

查看答案和解析>>

同步練習(xí)冊答案