【題目】如圖,四棱錐的底面是正方形, ,點E在棱PB上.
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)且E為PB的中點時,求AE與平面PDB所成的角的大小.
【答案】(1)見解析 (2)
【解析】試題分析:(Ⅰ)欲證平面AEC⊥平面PDB,根據(jù)面面垂直的判定定理可知在平面AEC內(nèi)一直線與平面PDB垂直,而根據(jù)題意可得AC⊥平面PDB;(Ⅱ)設(shè)AC∩BD=O,連接OE,根據(jù)線面所成角的定義可知∠AEO為AE與平面PDB所的角,在Rt△AOE中求出此角即可
試題解析:(1)證明:∵四邊形ABCD是正方形,∴AC⊥BD,∵,
∴PD⊥AC,∴AC⊥平面PDB,
∴平面.
(2)解:設(shè)AC∩BD=O,連接OE,
由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO為AE與平面PDB所的角,
∵ O,E分別為DB、PB的中點,
∴OE//PD, ,
在Rt△AOE中, ,∴,
即AE與平面PDB所成的角的大小為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知| |=4,| |=2,且 與 夾角為120°求:
(1)( ﹣2 )( + );
(2) 在 上的投影;
(3) 與 + 的夾角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,圓的極坐標(biāo)方程為,若以極點為原點,極軸所在的直線為軸建立平面直角坐標(biāo)系.
(1)求圓的參數(shù)方程;
(2)在直線坐標(biāo)系中,點是圓上的動點,試求的最大值,并求出此時點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=ax2+(a﹣2)x﹣2(a∈R).
(1)解關(guān)于x的不等式f(x)≥0;
(2)若a>0,當(dāng)﹣1≤x≤1時,f(x)≤0時恒成立,求a的取值范圍.
(3)若當(dāng)﹣1<a<1時,f(x)>0時恒成立,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間 上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)f(x)=4sin(2x )(x∈R),有下列命題: ①y=f(x)的表達式可改寫為y=4cos(2x﹣ );
②y=f(x)是以2π為最小正周期的周期函數(shù);
③y=f(x)的圖象關(guān)于點 對稱;
④y=f(x)的圖象關(guān)于直線x=﹣ 對稱.
其中正確的命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,函數(shù)有唯一零點,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求橢圓的標(biāo)準(zhǔn)方程
(1)已知某橢圓的左右焦點分別為F1(﹣1,0),F(xiàn)2(1,0),且經(jīng)過點P( , ),求該橢圓的標(biāo)準(zhǔn)方程;
(2)已知某橢圓過點( ,﹣1),(﹣1, ),求該橢圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC滿足| |=3,| |=4,O是△ABC所在平面內(nèi)一點,滿足| |=| |=| |,且 =λ + (λ∈R),則cos∠BAC= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com