精英家教網 > 高中數學 > 題目詳情
已知橢圓C的長軸兩端點為A、B.若C上存在一點Q,且∠AQB=120°,求橢圓C的離心率的范圍.
【答案】分析:由對稱性不防設Q在x軸上方,坐標為(x,y),進而可表示出tan∠AQB整理出關于x和y的關系式,同時把Q點代入橢圓方程,表示出y進而根據y的范圍確定a和c的不等式關系,求得離心率的范圍.
解答:解:由對稱性不防設Q在x軸上方,坐標為(x,y),
則tan∠AQB==-,即
整理得=-,①
∵Q在橢圓上,
,代入①得y=,
∵0<y≤b
∴0<≤b,化簡整理得3e4+4e2-4≥0,
解得≤e<1
點評:本題主要考查了橢圓的應用.涉及了直線的斜率和基本不等式等知識,難度不大但計算較繁瑣,考查了學生的運算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓C的長軸長與短軸長之比為
3
5
,焦點坐標分別為F1(-2,0),F2(2,0).
(1)求橢圓C的標準方程;
(2)已知A(-3,0),B(3,0),P是橢圓C上異于A、B的任意一點,直線AP、BP分別交y軸于M、N,求
OM
ON
的值;
(3)在(2)的條件下,若G(s,0),H(k,0),且
GM
HN
,(s<k),分別以OG、OH為邊作兩正方形,求此兩正方形的面積和的最小值,并求出取得最小值時的G、H點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•浦東新區(qū)三模)已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx(0≤x≤
2m
3
)
和橢圓弧
x2
4m2
+
y2
3m2
=1
(
2m
3
≤x≤2m)

(m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•浦東新區(qū)三模)第一題滿分4分,第二題滿分6分,第三題滿分8分.
已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)是否存在實數m,使得△PF1F2的邊長為連續(xù)的自然數.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C的長軸兩端點為A、B.若C上存在一點Q,且∠AQB=120°,求橢圓C的離心率的范圍.

查看答案和解析>>

同步練習冊答案