f(x)=
1
|x-1|
  x≠1
1           x=1
,方程[f(x)]3-
7
2
[f(x)]2+cf(x)-1=0有7個(gè)相異實(shí)根,則所有非零實(shí)根之積為( 。
分析:由于方程[f(x)]3-
7
2
[f(x)]2+cf(x)-1=0有7個(gè)相異實(shí)根,所以f(x)=1滿足方程[f(x)]3-
7
2
[f(x)]2+cf(x)-1=0,從而可得f(x)=1或2或
1
2
,進(jìn)而可求方程的根,由此可得所有非零實(shí)根之積.
解答:解:由題意,f(x)=1滿足方程[f(x)]3-
7
2
[f(x)]2+cf(x)-1=0
∴c=
7
2

∴[f(x)]3-
7
2
[f(x)]2+
7
2
f(x)-1=0
∴[f(x)-1][f(x)-2][f(x)-
1
2
]=0
∴f(x)=1或2或
1
2

1
|x-1|
=2
,可得x=
3
2
1
2
;由
1
|x-1|
=
1
2
,可得x=3或-1;由f(x)=1,可得x=1或0或2
∴所有非零實(shí)根之積為
3
2
×
1
2
×3×(-1)×1
×2=-
9
2

故選C.
點(diǎn)評(píng):本題考查分段函數(shù),考查方程的根,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

21、例4.已知f(x)=ax2+bx+c,g(x)=ax+b(a、b、c∈R),當(dāng)x∈[-1,1]時(shí),|f(x)|≤1
(1)證明:|c|≤1.
(2)x∈[-1,1]時(shí),證明|g(x)|≤2.
(3)設(shè)a>0,當(dāng)-1≤x≤1時(shí),g(x)max=2,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(x-1)2+1(x≤0)的反函數(shù)為( 。
A、f--1(x)=1-
x-1
(x≥1)
B、f--1(x)=1+
x-1
(x≥1)
C、f -1(x)=1-
x-1
(x≥2)
D、f -1(x)=1+
x-1
(x≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),對(duì)任意的實(shí)數(shù)x滿足f(x-2)=f(x+2),且當(dāng)x∈[-1,3)時(shí),f(x)=
2-|x|,(-1≤x≤1)
k
-x2+4x-3
,(1<x<3)
,若直線y=
1
4
x
與函數(shù)f(x)的圖象有3個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍為
-
35
4
<k<-
3
4
3
4
<k<
35
4
-
35
4
<k<-
3
4
3
4
<k<
35
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=(x+1)n(其中n∈N+).
(1)若f(x)=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n,求a0及Sn=a1+a2+a3+…+an;
(2)當(dāng)n=2013,計(jì)算:
C
1
2013
-2
C
2
2013
+…+k
C
k
2013
(-1)k-1+…+2013
C
2013
2013
(-1)2012

查看答案和解析>>

同步練習(xí)冊(cè)答案