(本題12分)
已知函有極值,且曲線處的切線斜率為3.
(1)求函數(shù)的解析式;
(2)求在[-4,1]上的最大值和最小值。
(3)函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
(1)
(2)上的最大值為13,最小值為-11。
(3)。
解析試題分析:(1)利用導(dǎo)數(shù)的幾何意義得到參數(shù)a,b的值。
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本小題滿分12分)設(shè)為奇函數(shù),a為常數(shù)。
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù).
科目:高中數(shù)學(xué)
來源:
題型:解答題
(12分)已知函數(shù)().
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本小題滿分14分)
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本小題滿分14分)
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本小題滿分14分)已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本小題滿分12分)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表 湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
(2)求解導(dǎo)數(shù)判定函數(shù)的單調(diào)性,進(jìn)而得到極值,和端點(diǎn)值,比較大小得到最值。
(3)根據(jù)函數(shù)單調(diào)性,確定極大值和極小值的符號(hào),使得有三個(gè)零點(diǎn)。
解:(1) ……………………1分
由題意,得…………3分
所以, …………………………4分
(2)由(1)知
令 ……………………5分x -4 (-4,
-2)-2 (-2,) (,1) 1 + 0 - 0 + ↗ 極大值 ↘ 極小值 ↗ 函數(shù)值 --11
年級(jí)
高中課程
年級(jí)
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
(1)求a的值;
(2)證明在區(qū)間上為增函數(shù);
(3)若對(duì)于區(qū)間上的每一個(gè)的值,不等式恒成立,求實(shí)數(shù)m 的取值范圍。
(1)求函數(shù)f(x)的極值;
(2)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍;
(3)求證.
(1)討論的單調(diào)性;
(2)設(shè),證明:當(dāng)時(shí),;
(3)若函數(shù)的圖像與x軸交于A,B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為x0,證明:(x0)<0.(本題滿分14分)
①當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
②設(shè)是的兩個(gè)極值點(diǎn),是的一個(gè)零點(diǎn).證明:存在實(shí)數(shù),使得按某種順序排列后構(gòu)成等差數(shù)列,并求.
已知函數(shù),其中.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若直線是曲線的切線,求實(shí)數(shù)的值;
(Ⅲ)設(shè),求在區(qū)間上的最大值.(其中為自然對(duì)數(shù)的底數(shù))
已知函數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),討論的單調(diào)性.
(1)若在的圖象上橫坐標(biāo)為的點(diǎn)處存在垂直于y 軸的切線,求a 的值;
(2)若在區(qū)間(-2,3)內(nèi)有兩個(gè)不同的極值點(diǎn),求a 取值范圍;
(3)在(1)的條件下,是否存在實(shí)數(shù)m,使得函數(shù)的圖象與函數(shù)的圖象恰有三個(gè)交點(diǎn),若存在,試出實(shí)數(shù)m 的值;若不存在,說明理由.
已知函數(shù)在點(diǎn)的切線方程為.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè),求證:在上恒成立.
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請(qǐng)作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號(hào): 滬ICP備07509807號(hào)-10 鄂公網(wǎng)安備42018502000812號(hào)