已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率e=2,則
a2+e
b
的最小值為( 。
A、
2
3
3
B、
2
6
3
C、2
3
D、2
6
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率e=2,可得
b
a
=
3
,
a2+e
b
=
1
3
b+
2
b
,利用基本不等式,即可得出結(jié)論.
解答: 解:∵雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率e=2,
b
a
=
3
,
a2+e
b
=
1
3
b+
2
b
≥2
1
3
2
b
=
2
6
3
,
故選:B.
點評:本題考查雙曲線的性質(zhì)和應用,解題時要認真審題,注意均值不等式的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

2-i
2+i
=x+yi,其中x,y∈R,i為虛數(shù)單位,則
y
x
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={1,2,3,4,5},B={4,5,6},則滿足S⊆A且S∩B≠∅的集合S個數(shù)是( 。
A、33B、32C、25D、24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足條件f(x+2)=-f(x)且f(-x-1)=-f(x-1),給出下列命題:
①函數(shù)f(x)為周期函數(shù)
②函數(shù)f(x)為偶函數(shù)
③函數(shù)f(x)為奇函數(shù)
④函數(shù)f(x)在R上為單調(diào)函數(shù)
⑤函數(shù)f(x)的圖象關(guān)于點(-1,0)對稱.
其中正確的命題是(  )
A、①③⑤B、②④⑤
C、①③④D、①②⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD是邊長為1的正方形,延長CD至E,使得DE=2CD.動點P從點A出發(fā),沿正方形的邊按逆時針方向運動一周回到A點,
AP
AB
AE
.則λ-μ的取值范圍為( 。
A、[-1,1]
B、[-1,2]
C、[-2,1]
D、[0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A,B是雙曲線M的兩焦點,點C在M上,且∠CBA=
π
4
,若AB=8,BC=
2
,則M的實軸長為(  )
A、4
B、4
2
C、2
2
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
5
2
,則橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為( 。
A、
1
2
B、
3
3
C、
3
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)在其定義域上既是奇函數(shù)又是增函數(shù)的是( 。
A、y=x-1
B、y=-
-x
C、y=
x
3
D、y=-
1
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-3x-10≤0},集合B={x|p+1≤x≤2p-1}.
(1)若p=4時,求A∩B、A∪B;
(2)若B⊆A,求實數(shù)p的取值范圍.

查看答案和解析>>

同步練習冊答案