△ABC中,已知b=30,c=15,角C=30°,則此三角形的解的情況是(  )
A、一解B、二解
C、無解D、無法確定
考點:正弦定理
專題:解三角形
分析:由正弦定理求得sinB的值,進而求得B.
解答: 解:由正弦定理知
b
sinB
=
c
sinC
,
∴sinB=
bsinC
c
=
30×
1
2
15
=1,
∴B=
π
2

故三角形有一解.
故選:A.
點評:本題主要考查了正弦定理的應(yīng)用.要求學(xué)生對正弦定理公式和變形公式能熟練記憶.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為1的正方體ABCD-A1B1C1D1中,E、F分別是A1B1、CD的中點,求點B到截面AEC1F的距離
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線
x=3-
2
2
t
y=
5
-
2
2
t
的傾斜角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos(-75°)的值是( 。
A、-
6
+
2
4
B、
6
+
2
4
C、1
D、
6
-
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=-
1
2
,則
1+2sinαcosα
sin2α-cos2α
=( 。
A、
1
3
B、3
C、-
1
3
D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從5種不同的書(每種書不少于3本)買3本送給3名同學(xué),每人各一本的不同送法有(  )
A、A
 
3
5
B、53
C、35
D、A
 
3
5
A
 
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x2與直線y-x-2=0圍成圖形的面積是( 。
A、
13
3
B、
13
6
C、
9
2
D、
7
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實數(shù)x,y滿足
y≥1
y≤2x-1
x+y≤5
,求目標(biāo)函數(shù)z=-x+y的最小值( 。
A、1B、0C、-3D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀程序框圖,執(zhí)行相應(yīng)的程序,若輸入x=4,則輸出y的值為(  )
A、-
1
2
B、-
3
4
C、-
5
4
D、-
13
8

查看答案和解析>>

同步練習(xí)冊答案