如圖1所示,點(diǎn)A、B是單位圓(圓心在原點(diǎn),半徑為1的圓)上兩點(diǎn),OA、OB與x軸正半軸所成的角分別為

用兩種方法計(jì)算后,利用等量代換可以得到的等式是                                    

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖1所示,在邊長(zhǎng)為12的正方形ADD1A1中,點(diǎn)B,C在線段AD上,且AB=3,BC=4,作BB1∥AA1,分別交A1D1,AD1于點(diǎn)B1,P,作CC1∥AA1,分別交A1D1,AD1于點(diǎn)C1,Q,將該正方形沿BB1,CC1折疊,使得DD1與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1
(Ⅰ)求證:AB⊥平面BCC1B1;
(Ⅱ)求四棱錐A-BCQP的體積;
(Ⅲ)求平面PQA與平面BCA所成銳二面角的余弦值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)b>0,橢圓方程為,拋物線方程為.如圖4所示,過點(diǎn)F(0,b+2)作x軸的平行線,與拋物線在

第一象限的交點(diǎn)為G.已知拋物線在點(diǎn)G的切線經(jīng)

過橢圓的右焦點(diǎn).

(1)求滿足條件的橢圓方程和拋物線方程;

(2)設(shè)A,B分別是橢圓長(zhǎng)軸的左、右端點(diǎn),試探究在

拋物線上是否存在點(diǎn)P,使得△ABP為直角三角形?

若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說明理由

(不必具體求出這些點(diǎn)的坐標(biāo)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)b>0,橢圓方程為=1,拋物線方程為x2=8(y-b).如圖4所示,過點(diǎn)F(0,b+2)作x軸的平行線,與拋物線在第一象限的交點(diǎn)為G.已知拋物線在點(diǎn)G的切線經(jīng)過橢圓的右焦點(diǎn)F1.

圖4

(1)求滿足條件的橢圓方程和拋物線方程.

(2)設(shè)A、B分別是橢圓長(zhǎng)軸的左、右端點(diǎn),試探究在拋物線上是否存在點(diǎn)P,使得△ABP為直角三角形?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說明理由(不必具體求出這些點(diǎn)的坐標(biāo)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)b>0,橢圓方程為=1,拋物線方程為x2=8(y-b).如圖6所示,過點(diǎn)F(0,b+2)作x軸的平行線,與拋物線在第一象限的交點(diǎn)為G.已知拋物線在點(diǎn)G的切線經(jīng)過橢圓的右焦點(diǎn)F1.

圖6

(1)求滿足條件的橢圓方程和拋物線方程.

(2)設(shè)A、B分別是橢圓長(zhǎng)軸的左、右端點(diǎn),試探究在拋物線上是否存在點(diǎn)P,使得△ABP為直角三角形?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說明理由(不必具體求出這些點(diǎn)的坐標(biāo)).

查看答案和解析>>

同步練習(xí)冊(cè)答案