【題目】2012年12月18日,作為全國首批開展空氣質量新標準監(jiān)測的74個城市之一,鄭州市正式發(fā)布數(shù)據.資料表明,近幾年來,鄭州市霧霾治理取得了很大成效,空氣質量與前幾年相比得到了很大改善.鄭州市設有9個監(jiān)測站點監(jiān)測空氣質量指數(shù)(),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設有2,5,2個監(jiān)測站點,以9個站點測得的的平均值為依據,播報我市的空氣質量.
(Ⅰ)若某日播報的為118,已知輕度污染區(qū)的平均值為74,中度污染區(qū)的平均值為114,求重度污染區(qū)的平均值;
(Ⅱ)如圖是2018年11月的30天中的分布,11月份僅有一天在內.
組數(shù) | 分組 | 天數(shù) |
第一組 | 3 | |
第二組 | 4 | |
第三組 | 4 | |
第四組 | 6 | |
第五組 | 5 | |
第六組 | 4 | |
第七組 | 3 | |
第八組 | 1 |
①鄭州市某中學利用每周日的時間進行社會實踐活動,以公布的為標準,如果小于180,則去進行社會實踐活動.以統(tǒng)計數(shù)據中的頻率為概率,求該校周日進行社會實踐活動的概率;
②在“創(chuàng)建文明城市”活動中,驗收小組把鄭州市的空氣質量作為一個評價指標,從當月的空氣質量監(jiān)測數(shù)據中抽取3天的數(shù)據進行評價,設抽取到不小于180的天數(shù)為,求的分布列及數(shù)學期望.
【答案】(Ⅰ)172(Ⅱ)①②見解析
【解析】
(Ⅰ)設重度污染區(qū)AQI的平均值為x,利用加權平均數(shù)求出x的值;
(Ⅱ)①由題意知11月份AQI小于180的天數(shù),計算所求的概率即可;
②由題意知隨機變量X的可能取值,計算對應的概率值,寫出分布列,求出數(shù)學期望值.
(Ⅰ)設重度污染區(qū)的平均值為,則,解得.
即重度污染區(qū)平均值為172.
(Ⅱ)①由題意知,在內的天數(shù)為1,
由圖可知,在內的天數(shù)為17天,故11月份小于180的天數(shù)為,
又,則該學校去進行社會實踐活動的概率為.
②由題意知,的所有可能取值為0,1,2,3,且
,,
,,
則的分布列為
0 | 1 | 2 | 3 | |
數(shù)學期望 .
科目:高中數(shù)學 來源: 題型:
【題目】某人從上一層到二層需跨10級臺階. 他一步可能跨1級臺階,稱為一階步,也可能跨2級臺階,稱為二階步,最多能跨3級臺階,稱為三階步. 從一層上到二層他總共跨了6步,而且任何相鄰兩步均不同階. 則他從一層到二層可能的不同過程共有( )種.
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某中學甲、乙兩班共有25名學生報名參加了一項 測試.這25位學生的考分編成的莖葉圖,其中有一個數(shù)據因電腦操作員不小心刪掉了(這里暫用x來表示),但他清楚地記得兩班學生成績的中位數(shù)相同.
(Ⅰ)求這兩個班學生成績的中位數(shù)及x的值;
(Ⅱ)如果將這些成績分為“優(yōu)秀”(得分在175分 以上,包括175分)和“過關”,若學校再從這兩個班獲得“優(yōu)秀”成績的考生中選出3名代表學校參加比賽,求這3人中甲班至多有一人入選的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某次數(shù)學知識比賽中共有6個不同的題目,每位同學從中隨機抽取3個題目進行作答,已知這6個題目中,甲只能正確作答其中的4個,而乙正確作答每個題目的概率均為,且甲、乙兩位同學對每個題目的作答都是相互獨立、互不影響的.
(1)求乙同學答對2個題目的概率;
(2)若甲、乙兩位同學答對題目個數(shù)分別是m,n,分別求出甲、乙兩位同學答對題目個數(shù)m,n的概率分布和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖放置的邊長為1的正方形沿軸滾動,點恰好經過原點.設頂點的軌跡方程是,則對函數(shù)有下列判斷:①函數(shù)是偶函數(shù);②對任意的,都有;③函數(shù)在區(qū)間上單調遞減;④函數(shù)的值域是;⑤.其中判斷正確的序號是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
Ⅰ當時,取得極值,求的值并判斷是極大值點還是極小值點;
Ⅱ當函數(shù)有兩個極值點,,且時,總有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知為圓的直徑,點為線段上一點,且,點為圓上一點,且.點在圓所在平面上的正投影為點,.
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)已知sin(-π+θ)+2cos(3π-θ)=0,則;
(2)已知.
①化簡f(α);
②若f(α),且,求cos α-sin α的值;
③若,求f(α)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某射手每次射擊擊中目標的概率是,且各次射擊的結果互不影響,假設這名射手射擊3次.
(1)求恰有2次擊中目標的概率;
(2)現(xiàn)在對射手的3次射擊進行計分:每擊中目標1次得1分,未擊中目標得0分;若僅有2次連續(xù)擊中,則額外加1分;若3次全擊中,則額外加3分.記為射手射擊3次后的總得分,求的概率分布列與數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com