已知定圓Q:x2+y2-2x-15=0,動圓M和已知圓內(nèi)切,且過點P(-1,0),
(1)求圓心M的軌跡及其方程;
(2)試確定m的范圍,使得所求方程的曲線C上有兩個不同的點關(guān)于直線l:y=4x+m對稱.
【答案】分析:(1)由圓Q:x2+y2-2x-15=0,我們易判斷出圓Q的圓心為(1,0),半徑為4,又由動圓M和已知圓內(nèi)切,且過點P(-1,0),根據(jù)橢圓的定義,易得M的軌跡是以P,Q為焦點的橢圓,進(jìn)而求出圓心M的軌跡及其方程;
(2)若所求方程的曲線C上有兩個不同的點關(guān)于直線l:y=4x+m對稱,則P、Q到直線l的距離相等,即線段PQ的中點M在直線l上,不妨另直線PQ與橢圓一定有兩個交點,由一元二次方程根與系數(shù)的關(guān)系,構(gòu)造關(guān)于m,n的方程組,即可得到滿足條件的m的范圍.
解答:解 (1)已知圓可化為(x-1)2+y2=16,設(shè)動圓圓心M(x,y),則|MP|為半徑,又圓M和圓Q內(nèi)切,即|MP|+|MQ|=4,故M的軌跡是以P,Q為焦點的橢圓,且PQ中心為原點,故動圓圓心M的軌跡方程是
(2)假設(shè)具有對稱關(guān)系的兩點所在直線l′的方程為,代入橢圓方程中有,即13x2-8nx+16n2-48=0.
若要橢圓上關(guān)于直線l對稱得不同兩點存在,則需l′與橢圓相交,且兩交點P、Q到直線l的距離相等,即線段PQ的中點M在直線l上,
故△=64n2-4×13×(16n2-48)>0,∴
設(shè)P(x1,y1),Q(x2,y2),
,,∴,
,∴,


點評:本題考查的知識點是圓與圓的位置關(guān)系及其判定,關(guān)于點、直線對稱的圓的方程,其中熟練掌握圓、橢圓的定義及性質(zhì)是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知定圓C:x2+(y-3)2=4,定直線m:x+3y+6=0,過A(-1,0)的一條動直線l與直線相交于N,與圓C相交于P,Q兩點,M是PQ中點.
(Ⅰ)當(dāng)l與m垂直時,求證:l過圓心C;
(Ⅱ)當(dāng)|PQ|=2
3
時,求直線l的方程;
(Ⅲ)設(shè)t=
AM
AN
,試問t是否為定值,若為定值,請求出t的值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定圓Q:x2+y2-2x-15=0,動圓M和已知圓內(nèi)切,且過點P(-1,0),
(1)求圓心M的軌跡及其方程;
(2)試確定m的范圍,使得所求方程的曲線C上有兩個不同的點關(guān)于直線l:y=4x+m對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定圓C:x2+(y-3)2=4,過點A(-1,0)的一條動直線l與圓C相交于P,Q兩點,若|PQ|=2
3
,則直線l的方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定圓Q:x2+y2-2x-15=0,動圓M和已知圓內(nèi)切,且過點P(-1,0),
(1)求圓心M的軌跡及其方程;
(2)試確定m的范圍,使得所求方程的曲線C上有兩個不同的點關(guān)于直線l:y=4x+m對稱.

查看答案和解析>>

同步練習(xí)冊答案