已知f(x)是定義在R上的奇函數(shù),當0≤x≤1時,f(x)=x2,當x>0時,f(x+1)=f(x)+1,若直線y=kx與函數(shù)y=f(x)的圖象恰有9個不同的公共點,則實數(shù)k的值為( 。
A、2
6
-2
B、2
2
-4
C、2
6
-4
D、2
2
-2
考點:抽象函數(shù)及其應用,函數(shù)的零點與方程根的關系
專題:函數(shù)的性質(zhì)及應用
分析:本題通過奇函數(shù)特征得到函數(shù)圖象經(jīng)過原點,且關于原點對稱,利用f(x+1)=f(x)+f(1)得到函數(shù)類似周期性特征,從而可以畫出函數(shù)的草圖,得到k的取值
解答: 解:∵當0≤x≤1時,f(x)=x2,
∴f(1)=1.
∵當x>0時,f(x+1)=f(x)+f(1),
∴f(x+1)=f(x)+1,
∴當x∈[n,n+1],n∈N*時,
f(x+1)=f(x-1)+1=f(x-2)+2=…=f(x-n)+n=(x-n)2+n,
∵函數(shù)f(x)是定義在R上的奇函數(shù),
∴函數(shù)圖象經(jīng)過原點,且關于原點對稱.
∵直線y=kx與函數(shù)y=f(x)的圖象恰有9個不同的公共點,
∴當x>0時,直線y=kx與函數(shù)y=f(x)的圖象恰有4個不同的公共點,
∴由x>0時f(x)的圖象可知:
直線y=kx與函數(shù)y=f(x)的圖象相切位置在x∈[2,3]時,直線y=kx與函數(shù)y=f(x)的圖象恰有9個不同的公共點,
y=kx
y=(x-2)2+2
得:
x2-(k+4)x+6=0,
令△=0,得:k=2
6
-4.
故選:C
點評:本題考查抽象函數(shù)及其應用,著重考查函數(shù)的零點與方程根的關系,考查函數(shù)的對稱性、周期性、奇偶性的綜合應用,考查轉(zhuǎn)化思想與作圖能力,屬于難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知矩陣A=
10
02
,B=
12
01
,若矩陣AB-1對應的變換把直線l變?yōu)橹本l′:x+y-2=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O為△ABC外一點,D為BC邊上一點,且
OC
+
OB
-2
OD
=0,若AB=3,AC=5.則
AD
BC
=( 。
A、-8B、8C、-2D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A(1,2),B(3,-1),C(3,4),則
AB
AC
( 。
A、11B、5C、-2D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

高二年級從參加期末考試的學生中抽出60名學生,并統(tǒng)計了他們的物理成績(成績均為整數(shù)且滿分為100分),把其中不低于50分的分成五段[50,60),[60,70)…[90,100]后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)根據(jù)江蘇省高中學業(yè)水平測試要求,成績低于60分屬于C級,需要補考,求抽取的60名學生中需要補考的學生人數(shù);
(2)年級規(guī)定,本次考試80分及以上為優(yōu)秀,估計這次考試物理學科優(yōu)秀率;
(3)根據(jù)(1),從參加補考的學生中選兩人,求他們成績至少有一個不低于50分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3-2|x|,g(x)=x2,構(gòu)造函數(shù)F(x)=
g(x),f(x)≥g(x)
f(x),f(x)<g(x)
,那么函數(shù)y=F(x)( 。
A、有最大值1,最小值-1
B、有最小值-1,無最大值
C、有最大值1,無最小值
D、有最大值3,最小值1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2sin(ωx+
3
),2),
b
=(2cosωx,0)(ω>0),函數(shù)f(x)=
a
b
的圖象與直線y=-2+
3
的相鄰兩個交點之間的距離為π.
(1)求ω的值;
(2)求函數(shù)f(x)在[0,π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(x2+1,p+2),
b
=(3,x),f(x)=
a
b
,p是實數(shù).
(1)若存在唯一實數(shù)x,使
a
+
b
c
=(1,2)平行,試求p的值;
(2)若函數(shù)y=f(x)是偶函數(shù),試求函數(shù)y=|f(x)-15|在區(qū)間[-1,3]上的值域;
(3)若函數(shù)f(x)在區(qū)間[-
1
2
,+∞)上是增函數(shù),試討論方程f(x)+
x
-p=0解的個數(shù),說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

7名同學中,有5名會下象棋,有4名會下圍棋,現(xiàn)從7人中選2人分別參加象棋和圍棋比賽,共有多少種不同的選法?

查看答案和解析>>

同步練習冊答案