精英家教網 > 高中數學 > 題目詳情
某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億元)和Q億元),它們與投資額t(億元)的關系有經驗公式其中,今該公司將5億元投資這兩個項目,其中對甲項目投資x(億元),投資這兩個項目所獲得的總利潤為y(億元),
(1)求y關于x的解析式,
(2)怎樣投資才能使總利潤最大,最大值為多少?.
(1)  ∈[0,5],;(2)當時,甲項目投資億元,乙項目投資億元,總利潤的最大值是億元;當 時,甲項目投資億元,乙項目投資不投資,總利潤的最大值是億元.

試題分析:(1)對甲、乙公司投資所獲利潤分別為∴投資這兩個項目所獲得的總利潤為 ∈[0,5],;(2)只需求函數的最大值就可以了,考慮到和(的關系,可用換元法,將其轉換為二次函數求最值問題,令,則 ,,只需討論對稱軸和定義域的位置關系即可求其最大值.
試題解析:(1)根據題意,得: ∈[0,5],.  4分
(2)令,則       
           8分
時,即,當時,,此時
時,即,當 時,,此時 12分   
答:當時,甲項目投資億元,乙項目投資億元,總利潤的最大值是億元;當 時,甲項目投資億元,乙項目投資不投資,總利潤的最大值是億元  14分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知是偶函數.
(1)求的值;
(2)證明:對任意實數,函數的圖像與直線最多只有一個交點;
(3)設若函數的圖像有且只有一個公共點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

近年來,網上購物已經成為人們消費的一種趨勢。假設某淘寶店的一種裝飾品每月的銷售量y(單位:千件)與銷售價格x(單位:元/件)滿足關系式其中2<x<6,m為常數,已知銷售價格為4元/件時,每月可售出21千件。(1)求m的值; (2)假設該淘寶店員工工資、辦公等每月所有開銷折合為每件2元(只考慮銷售出的件數),試確定銷售價格x的值,使該店每月銷售飾品所獲得的利潤最大.(結果保留一位小數)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

將進貨單價為80元的商品按90元一個售出時,能賣出400個,已知該商品每個漲價1元,其銷售量就減少20個,為了賺得最大利潤,售價應定為(       )
A.每個95元 B.每個100元C.每個105元D.每個110元

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

對于在區(qū)間[a,b]上有意義的兩個函數,如果對于區(qū)間[a,b]中的任意x均有,則稱在[a,b]上是“密切函數”, [a,b]稱為“密切區(qū)間”,若函數在區(qū)間[a,b]上是“密切函數”,則的最大值為          .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

對于函數,
①過該函數圖像上一點()的切線的斜率為
②函數的最小值為    
③該函數圖像與軸有4個交點
④函數上為減函數,在上也為減函數
其中正確命題的序號為                  

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若方程的解所在區(qū)間為,則          .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

定義區(qū)間,的長度均為. 用表示不超過的最大整數,記,其中.設,,若用表示不等式解集區(qū)間的長度,則當時,有(     )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

.已知函數,則等于    (    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案