已知在△ABC中,AC=2,AB=3,∠A=60°,求BC長(zhǎng)和△ABC的面積.
考點(diǎn):正弦定理
專題:解三角形
分析:利用余弦定理列出關(guān)系式,將AC,AB,以及cosA的值代入求出BC的長(zhǎng),利用三角形面積公式求出三角形ABC面積即可.
解答: 解:∵△ABC中,AC=2,AB=3,∠A=60°,
∴BC2=AC2+AB2-2AC•AB•cosA=4+9-6=7,即BC=
7

S△ABC=
1
2
AC•AB•sinA=
1
2
×2×3×
3
2
=
3
3
2
點(diǎn)評(píng):此題考查了正弦定理,三角形的面積公式,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線x+2y+m=0按向量
a
=(-1,-2)平移后與圓C:x2+y2+2x-4y=0相切,則實(shí)數(shù)m的值等于( 。
A、3或13B、3或-13
C、-3或7D、-3或-13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式ax2-3x+2<0的解集為A={x|1<x<b}.
(1)求a,b的值.
(2)求函數(shù)f(x)=(2a+b)x+
25
(b-a)x+a
,(x∈A)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=mx2-(4+m2)x,其中m∈R且m>0,區(qū)間D={x|f(x)<0},給定常數(shù)t∈(0,2),當(dāng)2-t≤m≤2+t時(shí),求區(qū)間D的長(zhǎng)度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知一艘我海監(jiān)船O上配有雷達(dá),其監(jiān)測(cè)范圍是半徑為25km的圓形區(qū)域.一艘外籍輪船從位于海監(jiān)船正東40km的A處出發(fā),徑直駛向位于海監(jiān)船正北30km的B處島嶼,速度為28km/h.問:這艘外籍輪船能否被我海監(jiān)船監(jiān)測(cè)到?若能,持續(xù)時(shí)間多長(zhǎng)?(要求用坐標(biāo)法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosx,-
1
2
),
b
=(
3
sinx,cos2x),x∈R,設(shè)函數(shù)f(x)=
a
b

(1)求f(x)的最小正周期和最值;
(2)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓E中心在原點(diǎn),焦點(diǎn)在x軸上,短軸長(zhǎng)為4,點(diǎn)Q(2,
2
)在橢圓上.
(1)求橢圓E的方程;
(2)設(shè)動(dòng)直線L交橢圓E于A、B兩點(diǎn),且
OA
OB
,求△OAB的面積的取值范圍.
(3)過M(x1,y1)的直線l1:x1x+2y1y=8
2
與過N(x2,y2)的直線l2:x2x+2y2y=8
2
的交點(diǎn)P(x0,y0)在橢圓E上,直線MN與橢圓E的兩準(zhǔn)線分別交于G,H兩點(diǎn),求
OG
OH
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
ax2-bx,設(shè)h(x)=f(x)-g(x)
(1)若g(2)=2,討論函數(shù)h(x)的單調(diào)性;
(2)若函數(shù)g(x)是關(guān)于x的一次函數(shù),且函數(shù)h(x)有兩個(gè)不同的零點(diǎn)x1,x2
①求b的取值范圍;
②求證:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x2-ax,(x<1)
(a-3)x-1,(x≥1)
滿足對(duì)任意x1≠x2,都有
f(x1)-f(x2)
x1-x2
<0成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案