(本小題12分) 已知曲線的極坐標方程為,曲線的方程是, 直線的參數(shù)方程是:   .

(1)求曲線的直角坐標方程,直線的普通方程;

(2)求曲線上的點到直線距離的最小值.

 

【答案】

解: (1)  ;(2)到直線距離的最小值為。

【解析】

試題分析:(Ⅰ)利用直角坐標與極坐標間的關系:ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進行代換即得C的直角坐標方程,將直線l的參數(shù)消去得出直線l的普通方程.

(Ⅱ)曲線C1的方程為4x2+y2=4,設曲線C1上的任意點(cosθ,2sinθ),利用點到直線距離公式,建立關于θ的三角函數(shù)式求解.

解: (1) 曲線的方程為,直線的方程是: 

(2)設曲線上的任意點,

該點到直線距離.

到直線距離的最小值為。

考點:本題主要考查了曲線參數(shù)方程求解、應用.考查函數(shù)思想,三角函數(shù)的性質(zhì).屬于中檔題.

點評:解決該試題的關鍵是對于橢圓上點到直線距離的最值問題,一般用參數(shù)方程來求解得到。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2010-2011學年福建師大附中高三上學期期中考試理科數(shù)學卷 題型:解答題

(本小題12分)已知函數(shù)為常數(shù))是實數(shù)集上的奇函數(shù),函數(shù)是區(qū)間[-1,1]上的減函數(shù).

(I)求的值;

(II)若所在的取值范圍上恒成立,求的取值范圍;

(Ⅲ)討論關于的方程的根的個數(shù).

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年吉林省高一上學期期中考試數(shù)學試卷 題型:解答題

(本小題12分)已知二次函數(shù)滿足

(1)求的解析式;

 (2) 當時,不等式:恒成立,求實數(shù)的范圍.

(3)設,求的最大值;

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年福建省高二下學期期中考試理科數(shù)學 題型:解答題

(本小題12分)

已知雙曲線的中心在原點,左右焦點分別為,離心率為,且過點,

(1)求此雙曲線的標準方程;

(2)若直線系(其中為參數(shù))所過的定點恰在雙曲線上,求證:。

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年福建省四地六校高二下學期第一次月考數(shù)學文卷 題型:解答題

 

(本小題12分)

已知橢圓C的左右焦點坐標分別是(-1,0),(1, 0),離心率,直線與橢圓C交于不同的兩點M,N,以線段MN為直徑作圓P。

(1)求橢圓C的方程;

(2)若圓P恰過坐標原點,求圓P的方程;

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年河南省許昌市高二下學期聯(lián)考數(shù)學理卷 題型:解答題

(本小題12分)

已知曲線直線,且直線與曲線相切于點,求直線的方程和切點的坐標。

 

查看答案和解析>>

同步練習冊答案