精英家教網 > 高中數學 > 題目詳情

(本小題共9分)
已知函數f(x)=。
(Ⅰ)求函數f(x)的定義域;
(Ⅱ)判斷函數f(x)的奇偶性,并證明;
(Ⅲ)判斷函數f(x)在定義域上的單調性,并用定義證明。

(1)x∈(-1,1)(2)奇函數(3)根據函數的定義法加以證明,一設二作差,三變形,四定號來完成,并下結論,屬于基礎題。

解析試題分析:解:(Ⅰ)由>0,解得-1<x<1,所以f(x)的定義域是(-1,1) 3分
證明:(Ⅱ)由(Ⅰ)知x∈(-1,1)
又因為f(-x)= ===-=-f(x).
所以函數f(x)是奇函數。                                6分
(Ⅲ)設-1<x<x<1,
f(x)-f(x)==
因為1-x>1-x>0;1+ x>1+ x>0,
所以>1.  所以>0.
所以函數f(x)= 在(-1,1)上是增函數.           9分
考點:函數概念和性質的運用
點評:解決該試題的關鍵是能利用函數的性質來分析證明函數單調性以及奇偶性的判定,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

定義在上的函數是減函數,且是奇函數,若,求實數的范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知函數是定義域為的奇函數,(1)求實數的值;(2)證明上的單調函數;(3)若對于任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分10分)設函數
(1)畫出函數y=f(x)的圖像;
(2)若不等式,(a¹0,a、bÎR)恒成立,求實數x的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)
已知函數,其中e是自然數的底數,
(1)當時,解不等式;
(2)當時,求正整數k的值,使方程在[k,k+1]上有解;
(3)若在[-1,1]上是單調增函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)畫出函數的圖象,寫出函數的單調區(qū)間;
(2)解關于的不等式

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)當時,討論的單調性;
(Ⅱ)設時,若對任意,存在,使,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)已知函數,其中.(1) 討論函數的單調性,并求出的極值;(2) 若對于任意,都存在,使得,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)已知函數
(1)若,求的單調區(qū)間;
(2)當時,求證:

查看答案和解析>>

同步練習冊答案