設進入某商場的每一位顧客購買甲種商品的概率為0.5,購買乙種商品的概率為0.6, 且購買甲種商品與購買乙種商品相互獨立,各顧客之間購買商品也是相互獨立的.
(1)求進入商場的1位顧客至少購買甲、乙兩種商品中的一種的概率;
(2)記表示進入商場的3位顧客中至少購買甲、乙兩種商品中的一種的人數(shù),求的分布列及期望.
(1)0.8;(2)2.4
解析試題分析:(1)因為每一位顧客購買甲種商品的概率為0.5,購買乙種商品的概率為0.6,所以要求進入商場的1位顧客至少購買甲、乙兩種商品中的一種的概率可以利用對立事件來解決,即1減去甲、乙都沒購買的概率(1-0.5)(1-0.6),即可得所求的結論.
(2)由(1)可得每1位顧客至少購買甲、乙兩種商品中的一種的概率為0.8.所以對三位顧客中至少購買甲、乙兩種商品中的一種的人數(shù)的分為0,1,2,3四種情況.利用幾何概型可求得相應的概率,再利用數(shù)學期望的公式即可得結論.
試題解析:
(1)
(2)取值有0、1、2、3
分布列為0 1 2 3 0.008 0.096 0.384 0.512
E()=3×0.8=2.4
考點:1.概率的概念.2.分布列的公式.3.事件的互斥或?qū)α?
科目:高中數(shù)學 來源: 題型:解答題
某校高一、高二兩個年級進行乒乓球?qū)官,每個年級選出3名學生組成代表隊,比賽規(guī)則是:①按“單打、雙打、單打”順序進行三盤比賽;②代表隊中每名隊員至少參加一盤比賽,但不能參加兩盤單打比賽.若每盤比賽中高一、高二獲勝的概率分別為,.
(1)按比賽規(guī)則,高一年級代表隊可以派出多少種不同的出場陣容?
(2)若單打獲勝得2分,雙打獲勝得3分,求高一年級得分ξ的概率分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調(diào)查得到了如下列表:
| 喜愛打籃球 | 不喜愛打籃球 | 合計 |
男生 | | 5 | |
女生 | 10 | | |
合計 | | | 50 |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
本著健康、低碳的生活理念,租自行車騎游的人越來越多。某自行車租車點的收費標準是每車每次租車時間不超過兩小時免費,超過兩小時的部分每小時收費標準為2元(不足1小時的部分按1小時計算)。有甲乙兩人相互獨立來該租車點租車騎游(各租一車一次),設甲、乙不超過兩小時還車的概率分別為;兩小時以上且不超過三小時還車的概率分別為;兩人租車時間都不會超過四小時.
(1)求出甲、乙兩人所付租車費用相同的概率;
(2)設甲、乙兩人所付的租車費用之和為隨機變量,求的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
記者在街上隨機抽取10人,在一個月內(nèi)接到的垃圾短信條數(shù)統(tǒng)計的莖葉圖如下:
(Ⅰ)計算樣本的平均數(shù)及方差;
(Ⅱ)現(xiàn)從10人中隨機抽出2名,設選出者每月接到的垃圾短信在10條以下的人數(shù)為,求隨機變量的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調(diào)查得到了如下列表:
| 喜愛打籃球 | 不喜愛打籃球 | 合計 |
男生 | | 5 | |
女生 | 10 | | |
合計 | | | 50 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
拋擲兩顆質(zhì)地均勻的骰子,計算:
(1)事件“兩顆骰子點數(shù)相同”的概率;
(2)事件“點數(shù)之和小于7”的概率;
(3)事件“點數(shù)之和等于或大于11”的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某工廠甲、乙兩個車間包裝同一種產(chǎn)品,在自動包裝傳送帶上每隔小時抽一包產(chǎn)品,稱其重量(單位:克)是否合格,分別記錄抽查數(shù)據(jù),獲得重量數(shù)據(jù)的莖葉圖如圖所示.
(1)根據(jù)樣品數(shù)據(jù),計算甲、乙兩個車間產(chǎn)品重量的平均值與方差,并說明哪個車間的產(chǎn)品的重量相對較穩(wěn)定;
(2)若從乙車間件樣品中隨機抽取兩件,求所抽取的兩件樣品的重量之差不超過克的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
生產(chǎn)A,B兩種元件,其質(zhì)量按測試指標劃分為:指標大于或等于82為正品,小于82為次品.現(xiàn)隨機抽取這兩種元件各100件進行檢測,檢測結果統(tǒng)計如下:
測試指標 | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
元件A | 8 | 12 | 40 | 32 | 8 |
元件B | 7 | 18 | 40 | 29 | 6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com