已知f(x)=32x-(k+1)3x+2,當(dāng)x∈R時,f(x)恒為正值,則k的取值范圍是( 。
A、(-∞,-1)
B、(-∞,2
2
-1)
C、(-1,2
2
-1)
D、(-2
2
-1,2
2
-1)
考點:函數(shù)恒成立問題
專題:綜合題,不等式的解法及應(yīng)用
分析:令3x=t 換元后分對稱軸大于0和小于等于0分類討論,當(dāng)對稱軸大于0時直接由判別式小于0求解,當(dāng)對稱軸小于等于0時則需要g(0)>0,求得k的取值范圍后取并集得答案.
解答:解:令3x=t (t>0),
則g(t)=t2-(k+1)t+2,
若x∈R時,f(x)恒為正值,
則g(t)=t2-(k+1)t+2>0對t>0恒成立.
k+1
2
>0
(k+1)2-8<0
  ①
k+1
2
≤0
g(0)=2>0
    ②
解①得:-1<k<-1+2
2
;
解②得:k≤-1.
綜上,實數(shù)k的取值范圍是(-∞,2
2
-1).
故選:B.
點評:本題考查了函數(shù)恒成立問題,考查了數(shù)學(xué)轉(zhuǎn)化思想方法和分類討論的數(shù)學(xué)思想方法,訓(xùn)練了利用“三個二次”求解參數(shù)的取值范圍,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,D為AC的中點,
BC
=3
BE
,BD與AE交于點F,若 
AF
=λ
AE
,則實數(shù)λ的值為(  )
A、
1
2
B、
2
3
C、
3
4
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)中,圓ρ=2cosθ與θ=
π
3
(ρ>0)所表示的圖形的交點的極坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域為R的函數(shù)f(x)滿足f(x+2)=2f(x),當(dāng)x∈[0,2)時,f(x)=
x2-x,x∈[0,1)
-(
1
2
)|x-
3
2
|
,x∈[1,2)
則當(dāng)x∈[-4,-2)時,函數(shù)f(x)≥
t2
4
-t+
1
2
恒成立,則實數(shù)t的取值范圍為(  )
A、2≤t≤3
B、1≤t≤3
C、1≤t≤4
D、2≤t≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是R上的減函數(shù),若對任意x∈R,f(x2-a)<f(1)恒成立,則實數(shù)a的取值范圍是(  )
A、(-1,+∞)
B、〔-1,+∞)
C、(-∞,-1〕
D、(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,邊長為a的等邊△ABC的中心是G,直線MN經(jīng)過G點與AB、AC分別交于M、N點,已知∠MGA=α(
π
3
≤α≤
3
).
(1)設(shè)S1、S2分別是△AGM、△AGN的面積,試用α表示S1、S2;
(2)當(dāng)線段MN繞G點旋轉(zhuǎn)時,求y=
1
S12
+
1
S22
的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

.
a11a12a13
a21a22a23
a31a32a33
.
=a11A11+a21A21+a31A31
,若ai,j=icosx+jsinx,其中i,j∈{1,2,3},則f(x)=a13A11+a23A21+a33A31的最小值是( 。
A、-3B、1C、-1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p≠0)經(jīng)過圓x2+y2+2x-4y+4=0的圓心,則p為( 。
A、-2B、1C、2D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=-
2a
b
ln(x+1)的圖象在x=1處的切線l過點(0,-
1
b
),并且l與圓C:x2+y2=1相離,則點(a,b)與圓C的位置關(guān)系是( 。
A、在圓上B、在圓外
C、在圓內(nèi)D、不能確定

查看答案和解析>>

同步練習(xí)冊答案