已知{an}為等差數(shù)列,且a1+a3=8,a2+a4=12.

(1){an}的通項公式;

(2)記{an}的前n項和為Sn,若a1,ak,Sk+2成等比數(shù)列,求正整數(shù)k的值.

 

【答案】

 (1) an=2n.(2) k=6.

【解析】

試題分析:(1)利用等差數(shù)列的通項公式,借助于條件a1+a3=12,a2+a4=6,可求a1,d的值,從而可求 數(shù)列的通項公式an及它的前n項和Sn

(2)由(1)可得Sn=n(n+1),那么結(jié)合因為a1,ak,Sk+2成等比數(shù)列得到k的值。

解:(1)設(shè)數(shù)列{an}的公差為d,由題意知

解得a1=2,d=2.

所以an=a1+(n-1)d=2+2(n-1)=2n.

(2)由(1)可得Sn=n(n+1).

因為a1,ak,Sk+2成等比數(shù)列,所以=a1Sk+2.

從而(2k)2=2(k+2)(k+3),即k2-5k-6=0,

解得k=6或k=-1(舍去).因此k=6.

考點:本試題主要考查了等差數(shù)列的通項公式、等比數(shù)列的通項公式和前n項和公式,是基礎(chǔ)題.解題時要認(rèn)真審題,正確運用公式。

點評:解決該試題的關(guān)鍵是對于等差數(shù)列的等差中項的性質(zhì)的靈活運用求解通項公式。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題:“在等差數(shù)(an)中,若4a2+a10+a( 。=24,則S11為定值”為真命題,由于印刷問題,括號處的數(shù)模糊不清,可推得括號內(nèi)的數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)an的前n項和為Sn,S10=
3
0
(1+3x)dx
,則a5+a6=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)到{an}中,a1=120,公差d=-4,Sn為其前n項和,若Sn≤an(n≥2).則n的最小值為(    )

A.60                  B.62              C.70               D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知命題:“在等差數(shù)(an)中,若4a2+a10+a(  )=24,則S11為定值”為真命題,由于印刷問題,括號處的數(shù)模糊不清,可推得括號內(nèi)的數(shù)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年江蘇省蘇州市高三教學(xué)調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

已知命題:“在等差數(shù)(an)中,若4a2+a10+a( )=24,則S11為定值”為真命題,由于印刷問題,括號處的數(shù)模糊不清,可推得括號內(nèi)的數(shù)為   

查看答案和解析>>

同步練習(xí)冊答案