已知,橢圓的方程為,雙曲線的方程為,與的離心率之積為,則的漸近線方程為( )
A. B.
C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年福建省龍巖市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)等比數(shù)列{},Sn是數(shù)列{}的前n項(xiàng)和,S3=14,且al+8,3a2,a3+6依次成等差數(shù)列,則al·a3等于( )
A. 4 B. 9 C. 16 D. 25
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆上海市高三上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù),若存在,使成立,則以下對(duì)實(shí)數(shù)的描述正確的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年黑龍江省高二上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:填空題
(本小題滿分12分)已知是橢圓的兩焦點(diǎn),是橢圓在第一象限弧上一點(diǎn),且滿足過點(diǎn)作傾斜角互補(bǔ)的兩條直線分別交橢圓于兩點(diǎn),
(1)求點(diǎn)坐標(biāo);
(2)求證:直線的斜率為定值;
(3)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年黑龍江省高二上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:填空題
給出下列命題:
(1)空間中點(diǎn)的柱坐標(biāo)為,則點(diǎn)的直角坐標(biāo)為;
(2)若曲線表示雙曲線,則的取值范圍是;
(3)已知,直線相交于點(diǎn),且它們的斜率之積為,則點(diǎn)的軌跡方程為;
(4)已知雙曲線方程為,則過點(diǎn)可以作一條直線與雙曲線交于兩點(diǎn),使點(diǎn)是線段的中點(diǎn).
其中正確命題的序號(hào)是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年黑龍江省高二上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè),(其中是兩兩垂直的單位向量),若,則實(shí)數(shù)的值分別是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年黑龍江省高二上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知直線的參數(shù)方程為為參數(shù)),曲線C的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正方向建立直角坐標(biāo)系,點(diǎn),直線與曲線C交于A、B兩點(diǎn).
(1)寫出直線的極坐標(biāo)方程與曲線C的普通方程;
(2)線段MA,MB長(zhǎng)度分別記為|MA|,|MB|,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年黑龍江省高二上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
直線經(jīng)過橢圓的一個(gè)焦點(diǎn)和一個(gè)頂點(diǎn),則該橢圓的離心率為( )
A、 B、 C、 D、
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年黑龍江省高一上學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖:為等腰直角三角形,.直線與相交.且,直線截這個(gè)三角形所得的位于直線右方的圖形面積為.點(diǎn)到直線的距離為.則的圖像大致為( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com