【題目】在平面直角坐標(biāo)系中,圓
的圓心為
.已知點
,且
為圓
上的動點,線段
的中垂線交
于點
.
(1)求點的軌跡方程;
(2)設(shè)點的軌跡為曲線
,若四邊形
的四個頂點都在曲線
上,對角線
,
互相垂直并且它們的交點恰為點
,求四邊形
面積的取值范圍.
【答案】(1); (2)[
,2].
【解析】
(1)根據(jù)條件可以判斷出,則點
的軌跡是以
、
為焦點,長軸長為
的橢圓,
(2)聯(lián)立直線與橢圓方程,利用根與系數(shù)關(guān)系表示出,
,再表示出
即可.
解:(1)因為為線段
中垂線上一點,所以
,
因為,
,所以
,
則點的軌跡是以
、
為焦點,長軸長為
的橢圓,所以軌跡方程為
;
(2)因為對角線,
互相垂直,所以
,
中至少有一條斜率存在,
不妨設(shè)的斜率為
,
當(dāng)時,
,
,此時
,
當(dāng)時,
過點
,故
的方程為
,
將此式代入得
,
設(shè),
,
,
,則
,
,
從而,
當(dāng)時,
的斜率為
,同上可得
,
故四邊形的
,
令,當(dāng)且僅當(dāng)
時,
,
此時,顯然
是以
為自變量的增函數(shù),
所以,
綜上所述,四邊形面積的取值范圍是
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蝴蝶定理因其美妙的構(gòu)圖,像是一只翩翩起舞的蝴蝶,一代代數(shù)學(xué)名家蜂擁而證,正所謂花若芬芳蜂蝶自來.如圖,已知圓的方程為
,直線
與圓
交于
,
,直線
與圓
交于
,
.原點
在圓
內(nèi).
(1)求證:.
(2)設(shè)交
軸于點
,
交
軸于點
.求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),已知函數(shù)
與函數(shù)
有交點,且交點橫坐標(biāo)之和不大于
,求
的取值范圍_________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形與梯形
所在的平面互相垂直,
,
,點
在線段
上.
(Ⅰ) 若點為
的中點,求證:
平面
;
(Ⅱ) 求證:平面平面
;
(Ⅲ) 當(dāng)平面與平面
所成二面角的余弦值為
時,求
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(Ⅰ)設(shè),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若曲線與
在公共點
處有相同的切線,求點
的橫坐標(biāo);
(Ⅲ)設(shè),且曲線
與
總存在公切線,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,討論
的單調(diào)性;
(2)若,且對于函數(shù)
的圖象上兩點
,
,存在
,使得函數(shù)
的圖象在
處的切線
.求證;
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為更好地落實農(nóng)民工工資保證金制度,南方某市勞動保障部門調(diào)查了年下半年該市
名農(nóng)民工(其中技術(shù)工、非技術(shù)工各
名)的月工資,得到這
名農(nóng)民工月工資的中位數(shù)為
百元(假設(shè)這
名農(nóng)民工的月工資均在
(百元)內(nèi))且月工資收入在
(百元)內(nèi)的人數(shù)為
,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:
(Ⅰ)求,
的值;
(Ⅱ)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有
名,非技術(shù)工有
名,則能否在犯錯誤的概率不超過
的前提下認為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?
參考公式及數(shù)據(jù):,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一樓房高為
米,某廣告公司在樓頂安裝一塊寬
為
米的廣告牌,
為拉桿,廣告牌的傾角為
,安裝過程中,一身高為
米的監(jiān)理人員
站在樓前觀察該廣傳牌的安裝效果:為保證安全,該監(jiān)理人員不得站在廣告牌的正下方:設(shè)
米,該監(jiān)理人員觀察廣告牌的視角
.
(1)試將表示為
的函數(shù);
(2)求點的位置,使
取得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在十九大“建設(shè)美麗中國”的號召下,某省級生態(tài)農(nóng)業(yè)示范縣大力實施綠色生產(chǎn)方案,對某種農(nóng)產(chǎn)品的生產(chǎn)方式分別進行了甲、乙兩種方案的改良。為了檢查甲、乙兩種方案的改良效果,隨機在這兩種方案中各任意抽取了40件產(chǎn)品作為樣本逐件稱出它們的重量(單位:克),重量值落在之間的產(chǎn)品為合格品,否則為不合格品。下表是甲、乙兩種方案樣本頻數(shù)分布表。
產(chǎn)品重量 | 甲方案頻數(shù) | 乙方案頻數(shù) |
6 | 2 | |
8 | 12 | |
14 | 18 | |
8 | 6 | |
4 | 2 |
(1)根據(jù)上表數(shù)據(jù)求甲(同組中的重量值用組中點數(shù)值代替)方案樣本中40件產(chǎn)品的平均數(shù)和中位數(shù)
(2)由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并回答有多大把握認為“產(chǎn)品是否為合格品與改良方案的選擇有關(guān)”.
甲方案 | 乙方案 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
參考公式:,其中
.
臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.814 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com