如圖,在圓錐PO中,已知PO=
2
,⊙O的直徑AB=2,C是
AB
的中點,D為AC的中點.
(Ⅰ)證明:平面POD⊥平面PAC;
(Ⅱ)求二面角B-PA-C的余弦值.
(Ⅰ)連接OC,
∵OA=OC,D是AC的中點
∴AC⊥OD
又∵PO⊥底面⊙O,AC?底面⊙O
∴AC⊥PO
∵OD、PO是平面POD內(nèi)的兩條相交直線
∴AC⊥平面POD,
而AC?平面PAC
∴平面POD⊥平面PAC
(Ⅱ)在平面POD中,過O作OH⊥PD于H,由(Ⅰ)知,平面POD⊥平面PAC
所以O(shè)H⊥平面PAC,
又∵PA?平面PAC
∴PA⊥HO
在平面PAO中,過O作OG⊥PA于G,連接GH,則有PA⊥平面OGH,從而PA⊥HG.故∠OGH為二面角B-PA-C的平面角
在Rt△ODA中,OD=OA•sin45°=
2
2

在Rt△ODP中,OH=
PO•OD
PO2+OD2
=
2
2
2
2+
1
2
=
10
5

在Rt△OPA中,OG=
PO•OA
PO2+OA2
=
2
×1
2+1
=
6
3

在Rt△OGH中,sin∠OGH=
OH
OG
=
10
5
6
3
=
15
5

所以cos∠OGH=
1-sin2∠OGH
=
1-
15
25
=
10
5

故二面角B-PA-C的余弦值為
10
5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.

(1)求證:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求點B到平面MAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在三棱錐S-ABC中,△ABC是邊長為2
3
的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分別為AB、SB的中點.
(1)證明:AC⊥SB;
(2)求三棱錐B-CMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱柱A1B1C1-ABC的三視圖,主視圖和側(cè)視圖是全等的矩形,俯視圖是等腰直角三角形,點M是A1B1的中點.
(I)求證:B1C平面AC1M;
(II)求證:平面AC1M⊥平面AA1B1B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,平面ABCD⊥平面ABEF,四邊形ABCD是正方形,四邊形ABEF是矩形,且AF=
1
2
AD
=a,G是EF的中點,則GB與平面AGC所成角的正弦值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在如圖所示的四棱錐P-ABCD中,已知PA⊥平面ABCD,ABDC,∠DAB=90°,PA=AD=DC=1,AB=2,M為PB的中點.
(1)求證:平面PAC⊥平面PBC;
(2)求二面角A-PB-C的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,在四棱錐P-ABCD中,PA⊥底面ABCD,且底面各邊都相等,M是PC上的一動點,當(dāng)點M滿足______時,平面MBD⊥平面PCD.(只要填寫一個你認(rèn)為是正確的條件即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在底面為平行四邊形的四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,AD=1,CD=2,∠DCB=60°.
(Ⅰ)求證:平面A1BCD1⊥平面BDD1B1
(Ⅱ)若D1D=BD,求四棱錐D-A1BCD1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在空間直角坐標(biāo)系中,已知A(-1,2,-3),B(3,0,-5),那么線段AB中點的坐標(biāo)為( 。
A.(2,2,-8)B.(1,1,-4)C.(-2,-2,8)D.(-1,-1,4)

查看答案和解析>>

同步練習(xí)冊答案