已知橢圓C經(jīng)過點A(0,2),B(
1
2
3
).
(Ⅰ)求橢圓C的方程.
(Ⅱ)設P(x0,y0)為橢圓C上的動點,求x20+2y0的最大值.
(1)設所求的橢圓方程為mx2+nb2=1,(m,n>0).
由于橢圓C經(jīng)過點A(0,2),B(
1
2
3
),
0+4n=1
m
4
+3n=1
,解得m=1,n=
1
4
,
因此所求橢圓C的方程為:
y2
4
+x2=1

(2)∵P為橢圓上的動點,∴
y20
4
+x20=1

∴x
20
+2y0=1-
y20
4
+2y0=-
1
4
(y0-4)2+5,-2≤y0≤2
當y0=2時,
x20
+2y0
取最大值4.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線y2=4x的一條弦被點A(4,2)平分,那么這條弦所在的直線方程式為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的焦點為F1(-1,0)、F2(1,0),點P(-1,
2
2
)在橢圓上.
(1)求橢圓C的方程;
(2)若拋物線E:y2=2px(p>0)與橢圓C相交于點M、N,當△OMN(O是坐標原點)的面積取得最大值時,求P的值.
(3)在(2)的條件下,過點F2作任意直線l與拋物線E相交于點A、B兩點,則直線AF1與直線BF1的斜率之和是否為定值?若是,求出定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,△ABC的頂點B、C的坐標為B(-2,0),C(2,0),直線AB,AC的斜率乘積為-
1
4
,設頂點A的軌跡為曲線E.
(1)求曲線E的方程;
(2)設曲線E與y軸負半軸的交點為D,過點D作兩條互相垂直的直線l1,l2,這兩條直線與曲線E的另一個交點分別為M,N.設l1的斜率為k(k≠0),△DMN的面積為S,試求
S
|k|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中心在坐標原點O,左頂點A(-2,0),離心率e=
1
2
,F(xiàn)為右焦點,過焦點F的直線交橢圓C于P、Q兩點(不同于點A).
(Ⅰ)求橢圓C的方程;
(Ⅱ)當△APQ的面積S=
18
2
7
時,求直線PQ的方程;
(Ⅲ)求
OP
FP
的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,將圓p:x2+y2=4上任意一點P′的縱坐標變?yōu)樵瓉淼囊话耄M坐標不變),得到點P,并設點P的軌跡為曲線C.
(1)求C的方程;
(2)設o為坐標原點,過點Q(
3
,0)的直線l與曲線C交于兩點A,B,線段AB的中點為N,且
OE
=2
ON
,點E在曲線C上,求直線l:
x
a
+
y
b
=1
的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
3
2
,A、B是橢圓的左、右頂點,P是橢圓上不同于A、B的一點,直線PA、PB斜傾角分別為α、β,則
cos(α-β)
cos(α+β)
=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線C:y2=4x焦點為F,直線l經(jīng)過點F且與拋物線C相交于A,B兩點
(Ⅰ)若線段AB的中點在直線y=1上,求直線l的方程;
(Ⅱ)若線段|AB|=20,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平面內(nèi)一動點P到點F(2,0)的距離比點P到y(tǒng)軸的距離大2,
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)過點F且斜率為2
2
的直線交軌跡C于A(x1,y1),B(x2,y2)(x1<x2)兩點,P(x3,y3)(x3≥0)為軌跡C上一點,若
OP
=
OA
OB
,求λ的值.

查看答案和解析>>

同步練習冊答案