【題目】已知函數(shù)

(Ⅰ)若曲線與曲線在它們的某個(gè)交點(diǎn)處具有公共切線,求的值;

(Ⅱ)若存在實(shí)數(shù)使不等式的解集為,求實(shí)數(shù)的取值范圍

(Ⅲ)若方程有三個(gè)不同的解,且它們可以構(gòu)成等差數(shù)列,寫出實(shí)數(shù)的值(只需寫出結(jié)果).

【答案】;(;(的值為.

【解析】試題分析:)設(shè)出切點(diǎn)坐標(biāo),聯(lián)立兩曲線方程,求出切點(diǎn)坐標(biāo)和值;Ⅱ)分離參數(shù),通過作差構(gòu)造函數(shù),將問題轉(zhuǎn)化為的圖像在直線下方的部分對應(yīng)點(diǎn)的橫坐標(biāo),再通過導(dǎo)函數(shù)的符號(hào)變化確定函數(shù)的單調(diào)性和最值即可求解;)再次求導(dǎo),利用等差中項(xiàng)直接寫出結(jié)果.

試題解析:)設(shè)的交點(diǎn)坐標(biāo)為

解得

解得的值為

)令的圖像在直線下方的部分對應(yīng)點(diǎn)的橫坐標(biāo)

解得的值

的情況如下:

3

+

0

0

+

極大值

極小值

因?yàn)?/span>

;

所以當(dāng)滿足條件.

)由(

可知,此時(shí),函數(shù)的對稱中心為:

方程有三個(gè)不同的解且它們可以構(gòu)成等差數(shù)列,實(shí)數(shù)的值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵數(shù)。乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中經(jīng)X表示。

1)如果X=8,求乙組同學(xué)植樹棵數(shù)的平均數(shù)和方差

2)如果X=9,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹總棵數(shù)為19的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)正方體圖形中,A,B為正方體的兩個(gè)頂點(diǎn),M,N,P分別為其所在棱的中點(diǎn),能得出AB∥平面MNP的圖形的個(gè)數(shù)有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,CM,CN為某公園景觀湖胖的兩條木棧道,∠MCN=120°,現(xiàn)擬在兩條木棧道的A,B處設(shè)置觀景臺(tái),記BC=aAC=b,AB=c(單位:百米)

1)若ab,c成等差數(shù)列,且公差為4,求b的值;

2)已知AB=12,記∠ABC,試用θ表示觀景路線A-C-B的長,并求觀景路線A-C-B長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線為

)若直線的斜率為,求函數(shù)的單調(diào)區(qū)間.

)若函數(shù)是區(qū)間上的單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(

A.復(fù)數(shù)z1,z2的模相等,則z1z2是共軛復(fù)數(shù)

B.z1,z2都是復(fù)數(shù),若z1z2是虛數(shù),則z1不是z2的共軛復(fù)數(shù)

C.復(fù)數(shù)z是實(shí)數(shù)的充要條件是z(z的共軛復(fù)數(shù))

D.已知復(fù)數(shù)z1=-12i,z21i,z332i(i是虛數(shù)單位),它們對應(yīng)的點(diǎn)分別為A,B,C,O為坐標(biāo)原點(diǎn),若(x,yR),則xy1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是邊長為1的正方形,垂直于底面,.

1)求證; 

2)求平面與平面所成二面角的大。

3)設(shè)棱的中點(diǎn)為,求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的個(gè)數(shù)有(

①向量是共線向量,則A、B、CD四點(diǎn)必在一直線上;②單位向量都相等;③任一向量與它的相反向量不相等;④共線的向量,若起點(diǎn)不同,則終點(diǎn)一定不同.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,,.

1)證明:是等比數(shù)列,是等差數(shù)列;

2)求的通項(xiàng)公式;

3)令,求數(shù)列的前項(xiàng)和的通項(xiàng)公式,并求數(shù)列的最大值、最小值,并指出分別是第幾項(xiàng).

查看答案和解析>>

同步練習(xí)冊答案