已知復(fù)數(shù)z=
2a+(1-a2)i
1+a2
,則復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)的軌跡是
 
考點(diǎn):復(fù)數(shù)代數(shù)形式的混合運(yùn)算,軌跡方程
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則和幾何意義即可得出.
解答: 解:∵復(fù)數(shù)z=
2a+(1-a2)i
1+a2
=
2a
1+a2
+
1-a2
1+a2
i

令z=x+yi(x,y∈R),則
x=
2a
1+a2
y=
1-a2
1+a2

∴x2+y2=(
2a
1+a2
)2+(
1-a2
1+a2
)2
=
(1+a2)2
(1+a2)2
=1,
故復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)的軌跡是x2+y2=1.
故答案為:x2+y2=1.
點(diǎn)評(píng):利用復(fù)數(shù)的運(yùn)算法則和幾何意義即可得出.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱柱ABCD-A1B1C1D1的底面ABCD是邊長(zhǎng)為2的菱形,AC∩BD=O,AA1=2
3
,BD⊥A1A,∠BAD=∠A1AC=60°,點(diǎn)M是棱AA1的中點(diǎn).
(Ⅰ)求證:A1C∥平面BMD;
(Ⅱ)求證:A1O⊥平面ABCD;
(Ⅲ)求直線BM與平面BC1D所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x>0,y>0,滿足x+y-2xy+4=0,求xy最小值和x+y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知log62=a,則用a表示log36為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有19人圍成一圈,從中選出4個(gè)人,要求這4個(gè)人恰好有3人相鄰,一共有
 
種不同的選法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
10
i=1
(2i+1)
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�