【題目】設(shè)函數(shù).
(Ⅰ)當(dāng)時,求曲線在點處的切線方程;
(Ⅱ)討論函數(shù)的單調(diào)性.
【答案】(Ⅰ);(Ⅱ)討論見解析
【解析】
(Ⅰ)利用導(dǎo)數(shù)的幾何意義求解即可;
(Ⅱ)分類討論參數(shù)的范圍,利用導(dǎo)數(shù)證明單調(diào)性即可.
解:(Ⅰ)當(dāng)時,
所以.
所以.
所以曲線在點處的切線方程為.
(Ⅱ)因為,
所以.
(1)當(dāng)時,因為
由得,
由得,
所以在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減.
(2)當(dāng)時,令,得.
① 當(dāng)時,
由,得;
由,得或.
所以在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間和內(nèi)單調(diào)遞減.
②當(dāng)時,
由得或;
由得.
所以在區(qū)間和內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減.
③當(dāng)時,因為
所以在區(qū)間內(nèi)單調(diào)遞增.
④當(dāng)時,由得或;
由得.
所以在區(qū)間和內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減.
綜上可知,當(dāng)時,在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減;
當(dāng)時,在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間和內(nèi)單調(diào)遞減;
當(dāng)時,在區(qū)間和內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減;
當(dāng)時,在區(qū)間內(nèi)單調(diào)遞增;
當(dāng)時,在區(qū)間和內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)令函數(shù),若時,,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個命題:①命題“若,則”的逆否命題為“若,則”;②“”是“”的充分不必要條件; ③若為假命題,則均為假命題;④對于命題使得,則為,均有.其中,真命題的個數(shù)是 ( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測評(總分100分),在成績統(tǒng)計分析中,抽取12名學(xué)生的成績以莖葉圖形式表示如圖,學(xué)校規(guī)定測試成績低于87分的為“未達(dá)標(biāo)”,分?jǐn)?shù)不低于87分的為“達(dá)標(biāo)”.
(1)求這組數(shù)據(jù)的眾數(shù)和平均數(shù);
(2)在這12名學(xué)生中從測試成績介于80~90之間的學(xué)生中任選2人,求至少有1人“達(dá)標(biāo)”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為、,是橢圓的上頂點,,且的面積為1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)、是橢圓上的兩個動點,,求當(dāng)的面積取得最大值時,直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓方程為,過點的直線l交橢圓于點A,B,O是坐標(biāo)原點,點P滿足,點N的坐標(biāo)為,當(dāng)l繞點M旋轉(zhuǎn)時,求:
(1)動點P的軌跡方程;
(2)的最小值與最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017高考新課標(biāo)Ⅲ,理19)如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市交通部門為了對該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照分成5組,制成如圖所示頻率分直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);
(3)已知滿意度評分值在內(nèi)的男生數(shù)與女生數(shù)3:2,若在滿意度評分值為的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有兩個車間生產(chǎn)同一種產(chǎn)品,第一車間有工人200人,第二車間有工人400人,為比較兩個車間工人的生產(chǎn)效率,采用分層抽樣的方法抽取工人,并對他們中每位工人生產(chǎn)完成一件產(chǎn)品的時間(單位:min)分別進(jìn)行統(tǒng)計,得到下列統(tǒng)計圖表(按照[55,65),[65,75),[75,85),[85,95]分組).
分組 | 頻數(shù) |
[55,65) | 2 |
[65,75) | 4 |
[75,85) | 10 |
[85,95] | 4 |
合計 | 20 |
第一車間樣本頻數(shù)分布表
(Ⅰ)分別估計兩個車間工人中,生產(chǎn)一件產(chǎn)品時間小于75min的人數(shù);
(Ⅱ)分別估計兩車間工人生產(chǎn)時間的平均值,并推測哪個車間工人的生產(chǎn)效率更高?(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)
(Ⅲ)從第一車間被統(tǒng)計的生產(chǎn)時間小于75min的工人中隨機(jī)抽取2人,求抽取的2人中,至少1人生產(chǎn)時間小于65min的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com