精英家教網 > 高中數學 > 題目詳情

【題目】“楊輝三角”又稱“賈憲三角”,是因為賈憲約在公元1050年首先使用“賈憲三角”進行高次開方運算,而楊輝在公元1261年所著的《詳解九章算法》一書中,輯錄了賈憲三角形數表,并稱之為“開方作法本源”圖.下列數表的構造思路就源于“楊輝三角”.該表由若干行數字組成,從第二行起,每一行中的數字均等于其“肩上”兩數之和,表中最后一行僅有一個數,則這個數是(
A.2017×22016
B.2018×22015
C.2017×22015
D.2018×22016

【答案】B
【解析】解:由題意,數表的每一行都是等差數列,從右到左, 且第一行公差為1,第二行公差為2,第三行公差為4,…,第2015行公差為22014 ,
故第1行的第一個數為:2×21
第2行的第一個數為:3×20 ,
第3行的第一個數為:4×21

第n行的第一個數為:(n+1)×2n2 ,
第2017行只有M,
則M=(1+2017)22015=2018×22015
故選:B.
數表的每一行都是等差數列,從右到左,第一行公差為1,第二行公差為2,第三行公差為4,…,第2015行公差為22014 , 第2016行只有M,由此可得結論.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,a,b,c成等比數列,且a2﹣c2=ac﹣bc.
(Ⅰ)求∠A的大小;
(Ⅱ)若a= ,且sinA+sin(B﹣C)=2sin2C,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若定義在上的函數滿足條件:存在實數,使得:

任取,有是常數);

對于內任意,當,總有.

我們將滿足上述兩條件的函數稱為平頂型函數,稱平頂高度,稱平頂寬度”.根據上述定義,解決下列問題:

1)函數是否為平頂型函數?若是,求出平頂高度平頂寬度;若不是,簡要說明理由.

2 已知平頂型函數,求出的值.

3)對于(2)中的函數,若上有兩個不相等的根,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《周髀算經》中給出了弦圖,所謂弦圖是由四個全等的直角三角形和中間一個小正方形拼成一個大的正方形,若圖中直角三角形兩銳角分別為α、β,且小正方形與大正方形面積之比為4:9,則cos(α﹣β)的值為(
A.
B.
C.
D.0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知三棱柱ABC﹣A1B1C1的底面ABC是等邊三角形,且AA1⊥底面ABC,M為AA1的中點,N在線段AB上,且AN=2NB,點P在CC1上.
(1)證明:平面BMC1⊥平面BCC1B1
(2)當 為何值時,有PN∥平面BMC1?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,將邊長為2的正方形ABCD沿對角線BD折疊,使得平面ABD丄平面CBD,若AM丄平面ABD,且AM=
(1)求證:DM⊥平面ABC;
(2)求二面角C﹣BM﹣D的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知F1 , F2是橢圓C1與雙曲線C2的公共焦點,點P是C1與C2的公共點,若橢圓C1的離心率e1= ,∠F1PF2= ,則雙曲線C2的離心率e2的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數方程為 (t為參數),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸非負半軸為極軸)中,圓C的方程為ρ=6sinθ.
(1)求圓C的直角坐標方程;
(2)若點P(1,2),設圓C與直線l交于點A,B,求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】閱讀下面材料:在計算時,我們發(fā)現,從第一個數開始,后面每個數與它的前面?zhèn)數的差都是一個相等的常數,具有這種規(guī)律的一列數,除了直接相加外,我們還可以用下面的公式來計算它們的和,(其中:表示數的個數,表示第一個數,表示最后一個數)),那么,利用或不利用上面的知識解答下面的問題:某集團總公司決定將下屬的一個分公司對外招商承包,有符合條件的兩家企業(yè)A、B分別擬定上繳利潤,方案如下:A:每年結算一次上繳利潤,第一年上繳利潤100萬元,以后每年比前一年增加100萬元;B:每半年結算一次上繳利潤,第一個半年上繳利潤30萬元,以后每半年比前半年增加30萬元;

1)如果承包4年,你認為應該承包給哪家企業(yè),總公司獲利多?

2)如果承包年,請用含的代數式分別表示兩家企業(yè)上繳利潤的總金額,請問總公司應該如何在承包企業(yè)AB中選擇?

查看答案和解析>>

同步練習冊答案