一口袋中放有質(zhì)地、大小完全相同的6個(gè)球,編號(hào)分別為1,2,3,4,5,6,甲先摸出一個(gè)球,記下編號(hào),放回后乙再摸一個(gè)球,甲、乙兩人所摸球的編號(hào)不同的概率是
 
考點(diǎn):古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的甲、乙兩人取出的數(shù)字共有6×6種等可能的結(jié)果,滿足條件的事件可以通過列舉法得到,根據(jù)古典概型的概率公式以及對(duì)立事件的概率關(guān)系即可得到結(jié)果.
解答: 解:試驗(yàn)發(fā)生包含的甲、乙兩人取出的數(shù)字共有6×6=36種等可能的結(jié)果,
設(shè)“編號(hào)不相同”為事件B,
則“編號(hào)相同”為其對(duì)立事件
.
B
,
事件
.
B
包含的基本事件為(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),
P(
.
B
)=
6
36
=
1
6

所以 P(B)=1-P(
.
B
)=1-
1
6
=
5
6
,
故編號(hào)不同的概率為
5
6

故答案為:
5
6
點(diǎn)評(píng):本題考查古典概型及其概率公式,考查利用列舉法得到試驗(yàn)包含的所有事件,考查利用概率知識(shí)解決實(shí)際問題,本題好似一個(gè)典型的概率題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
e2x
x-1

(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)x≥2時(shí),f′(x)≥af(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),雙曲線l的漸近線與拋物線y2=8x的準(zhǔn)線的一個(gè)交點(diǎn)縱坐標(biāo)為-1,則雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知底面是正方形的長(zhǎng)方體ABCD-A1B1C1D1的底面邊長(zhǎng)AB=6,側(cè)棱長(zhǎng)AA1=2
7
,它的外接球的球心為O,點(diǎn)E是AB的中點(diǎn),點(diǎn)P是球O上任意一點(diǎn),有以下判斷:
①PE長(zhǎng)的最大值是9;
②三棱錐P-EBC體積最大值是15+3
7

③存在過點(diǎn)E的平面,截球O的截面面積是8π;
④Q是球O上另一點(diǎn),PQ=8,則四面體ABPQ體積的最大值為56;
⑤過點(diǎn)E的平面截球O所得截面面積最大時(shí),B1C垂直于該截面.
其中判斷正確的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列,Sn為其前n項(xiàng)和,且滿足an2=S2n-1(n∈N+).若不等式
λ
an+1
n+8•(-1)n
n
對(duì)任意的n∈N+恒成立,則實(shí)數(shù)λ的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=4x,F(xiàn)為其焦點(diǎn),A(3,2),點(diǎn)P是拋物線上的動(dòng)點(diǎn),當(dāng)|PA|+|PF|取得最小值時(shí),P點(diǎn)的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等比數(shù)列{an}的前n項(xiàng)和Sn=2•3n-2+a,等差數(shù)列{bn}的前n項(xiàng)和Tn=2n2-n+b,則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角φ的終邊經(jīng)過點(diǎn)P(3,-4),函數(shù)f(x)=sin(ωx+φ)(ω>0)的圖象的相鄰的兩條對(duì)稱軸之間的距離等于
π
3
,則f(
π
12
)的值為(  )
A、
2
10
B、-
2
10
C、
7
2
10
D、-
7
2
10

查看答案和解析>>

同步練習(xí)冊(cè)答案